概述
实际项目见:https://github.com/HiAliens/Cat-and-dog
一、概述
一步步从数据处理和读入开始,到模型创建、训练、测试。
二、所含文件
文件注释里有详细的介绍,详细见上面gitghu地址
三、代码
- preprocessing.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author:Dr.Shang
import cv2
import os
import os
def resize(src):
"""
按照src的目录结构创建剪裁成227*227的图片
:param src: 需要裁剪图片的根目录
:return:
"""
succes = 0
fail = 0
fail_file = []
for root, dirs, files in os.walk(src):
print('开始文件写入……')
for file in files:
filepath = os.path.join(root, file)
filepath_list = filepath.split('\')
# print(filepath)
# print(filepath_list)
# print(file)
try:
image = cv2.imread(filepath)
dim = (227, 227)
resized = cv2.resize(image, dim)
cwd = os.getcwd()
new_img_dir = os.path.join(cwd, 'resized_images2')
# new_img_dir_test = os.path.join(new_img_dir, filepath_list[-3]) 直接在这个地址创建文件夹报错
# print('test:' + new_img_dir_test)
if not os.path.exists(new_img_dir):
os.mkdir(new_img_dir)
# print('success')
new_img_path = new_img_dir + os.sep + filepath_list[-3]
# print(new_img_path == new_img_dir_test)
if not os.path.exists(new_img_path):
os.mkdir(new_img_path)
class_name = new_img_path + os.sep + filepath_list[-2]
if not os.path.exists(class_name):
print('{}文件夹不存在,已创建'.format(class_name))
os.mkdir(class_name)
path = os.path.join(class_name, file)
if not os.path.exists(path):
cv2.imwrite(path, resized)
succes += 1
# print('写入文件{}成功'.format(path))
# pass
except:
fail += 1
path += '\n'
fail_file.append(path)
print(filepath + '文件出错')
if (succes + fail) % 500 == 0:
print('已处理{}张文件,成功{},失败{},失败文件请查看fail.txt'.format(succes+fail, succes, fail))
finally:
f = open('fail.txt', 'w')
f.write(fail_file)
print('总共成功写入{}张,失败{}'.format(succes, fail))
if __name__ == '__main__':
path = r'D:DataSetkagglecatdog'
resize(path)
- GetImageLabel.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author:Dr.Shang
import os
import numpy as np
def get_file(file_dir):
'''
根据指定的训练或验证或测试数据集的路径获取图片集,目录结构应为 file——dir下包含cat和dog两个文件夹
:param file_dir: 训练数据集文件夹
:param is_tfr: 以何种方法得到image和label
:return: image和label
'''
images = []
floders = []
for root, sub_folders, files in os.walk(file_dir):
for file in files:
images.append(os.path.join(root, file))
for floder in sub_folders:
floders.append(os.path.join(root, floder))
labels = []
for one_floder in floders:
num_img = len(os.listdir(one_floder)) # 统计one_floder下包含多少个文件
label = one_floder.split('\')[-1]
# print(label)
if label == 'cats':
labels = np.append(labels, num_img * [0]) # 生成一个2维列表
else:
labels = np.append(labels, num_img * [1])
# print(len(labels))
# shuffle
temp = []
temp = np.array([images, labels])
# print(temp)
temp = temp.transpose()
# print(temp)
'''
[['D:\DataSet\kaggle\small_samples\test\cats\cat.1500.jpg'
'D:\DataSet\kaggle\small_samples\test\cats\cat.1501.jpg'
'D:\DataSet\kaggle\small_samples\test\cats\cat.1502.jpg' ...
'D:\DataSet\kaggle\small_samples\test\dogs\dog.1997.jpg'
'D:\DataSet\kaggle\small_samples\test\dogs\dog.1998.jpg'
'D:\DataSet\kaggle\small_samples\test\dogs\dog.1999.jpg']
['0.0' '0.0' '0.0' ... '1.0' '1.0' '1.0']]
[['D:\DataSet\kaggle\small_samples\test\cats\cat.1500.jpg' '0.0']
['D:\DataSet\kaggle\small_samples\test\cats\cat.1501.jpg' '0.0']
['D:\DataSet\kaggle\small_samples\test\cats\cat.1502.jpg' '0.0']
...
['D:\DataSet\kaggle\small_samples\test\dogs\dog.1997.jpg' '1.0']
['D:\DataSet\kaggle\small_samples\test\dogs\dog.1998.jpg' '1.0']
['D:\DataSet\kaggle\small_samples\test\dogs\dog.1999.jpg' '1.0']]
'''
np.random.shuffle(temp)
image_list = list(temp[:, 0])
label_list = list(temp[:, 1])
label_list = [int(float(i)) for i in label_list]
return image_list, label_list
if __name__ == '__main__':
image, label = get_file(r'D:codingpythoncoding-pycharmopencv+tensorflowCAT-VS-DOGresized_images2test')
# print(image)
# print(label)
- ConvertToTFRecord.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author:Dr.Shang
import tensorflow as tf
import os
from skimage import io
def int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def convert_to_tfrecord(images_list, label_list, save_dir, name):
filename = os.path.join(save_dir, name + '.tfrecords') # 路径
num_sample = len(images_list)
project_name = save_dir.split('\')[5] # 具体看个人路径中项目名称在第几位置上
writer = tf.python_io.TFRecordWriter(filename)
print(f'{project_name}的{name}数据集转换开始……')
for i in range(num_sample):
try:
image = io.imread(images_list[i])
# print(type(image)) # must be a array
image_raw = image.tostring()
label = int(label_list[i])
example = tf.train.Example(features=tf.train.Features(feature={
'label':int64_feature(label),
'image_raw':bytes_feature(image_raw)
}))
writer.write(example.SerializeToString())
except IOError as e:
print(f'读取{images_list[i]}失败')
writer.close()
print(f'{project_name}的{name}数据集转换为{name}.tfrecords完成')
if __name__ == '__main__':
import GetImageLabel as getdata
import pysnooper
# @pysnooper.snoop()
def run():
cwd = os.getcwd()
dirs = os.listdir('./resized_images')
save_dir = []
src = os.path.join(cwd, 'resized_images')
print(src)
for dir in dirs:
save_dir.append(os.path.join(cwd, 'TFRecord\' + dir))
src += os.sep + dir
for i in range(len(dirs)):
if not os.path.exists('./TFRecord'):
os.mkdir('./TFRecord')
if not os.path.exists(save_dir[i]):
os.mkdir(save_dir[i])
print(f'创建{dirs[i]}文件夹成功!')
image_list, label_list = getdata.get_file(src)
convert_to_tfrecord(image_list, label_list, save_dir[i], dirs[i])
run()
- ReadDataFromTFR.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author:Dr.Shang
import tensorflow as tf
def read_and_decode(tfrecords_file, batch_size, image_size=227): # 默认是AlexNet
filename_queue = tf.train.string_input_producer([tfrecords_file])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
img_features = tf.parse_single_example(serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'image_raw': tf.FixedLenFeature([], tf.string)
}) # 这里是一次读取一张图片
image = tf.decode_raw(img_features['image_raw'], tf.uint8)
image = tf.reshape(image, [image_size, image_size, 3])
label = tf.cast(img_features['label'], tf.int32)
image_batch, label_batch = tf.train.shuffle_batch([image, label],
batch_size=batch_size,
min_after_dequeue=100,
num_threads=64,
capacity=200)
label_batch = tf.reshape(label_batch, [batch_size])
return image_batch, label_batch
if __name__ == '__main__':
import os
tfr_files = []
for root, dirs, files in os.walk('./TFRecord'): # 若想使用绝对路径,指定绝对路径
for file in files:
tfr_files.append(os.path.join(root, file))
image_batch, label_batch = read_and_decode(tfr_files[0], 32)
print(image_batch.shape) # (32, 227, 227, 3)
print(label_batch.shape) # (32,)
- GetBatch.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author:Dr.Shang
'''
ReadDataFromTFR 是将图片数据转化为TFR,当数据量庞大时,转换时间过长,这个办法是将图片地址转化为TFR,在训练过程中,
根据地址读取图片数据
'''
import tensorflow as tf
def get_batch(image_list, label_list, img_size, batch_size, capacity):
image = tf.cast(image_list, tf.string)
label = tf.cast(label_list, tf.int32)
input_queue = tf.train.slice_input_producer([image, label])
label = input_queue[1]
image_contents = tf.read_file(input_queue[0])
image = tf.image.decode_jpeg(image_contents, channels=3)
image = tf.image.resize_image_with_crop_or_pad(image, img_size, img_size)
image = tf.image.per_image_standardization(image) # 图片标准化
image_batch, label_batch = tf.train.batch([image, label], batch_size=batch_size, num_threads=64,capacity=capacity)
label_batch = tf.reshape(label_batch, [batch_size])
return image_batch, label_batch
if __name__ == '__main__':
import GetImageLabel
import os
cwd = os.getcwd()
path = os.path.join(cwd, 'resized_images')
dirs = os.listdir('./resized_images')
image_list, label_list = [], []
image_list, label_list = GetImageLabel.get_file(path)
with tf.Session() as sess:
image, label = get_batch(image_list, label_list, 227, 32, 200)
image2, label2 = sess.run([image, label])
print(label2)
- model.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author:Dr.Shang
import numpy as np
def onehot(labels):
num_sample = len(labels)
num_class = max(labels) + 1
onehot_labels = np.zeros((num_sample, num_class))
onehot_labels[np.arange(num_sample), labels] = 1
return onehot_labels
- model.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author:Dr.Shang
import tensorflow as tf
image_size = 227
lr = 1e-4
epoch = 200
batch_size = 50
display_step = 5
num_class = 2
num_fc1 = 4096
num_fc2 = 2048
W_conv = {
'conv1': tf.Variable(tf.truncated_normal([11, 11, 3, 96], stddev=0.0001)),
'conv2': tf.Variable(tf.truncated_normal([5, 5, 96, 256], stddev=0.01)),
'conv3': tf.Variable(tf.truncated_normal([3, 3, 256, 384], stddev=0.01)),
'conv4': tf.Variable(tf.truncated_normal([3, 3, 384, 384], stddev=0.01)),
'conv5': tf.Variable(tf.truncated_normal([3, 3, 384, 256], stddev=0.01)),
'fc1': tf.Variable(tf.truncated_normal([5 * 5 * 256, num_fc1], stddev=0.1)),
'fc2': tf.Variable(tf.truncated_normal([num_fc1, num_fc2], stddev=0.1)),
'fc3': tf.Variable(tf.truncated_normal([num_fc2, num_class], stddev=0.1)),
}
b_conv = {
'conv1': tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[96])),
'conv2': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[256])),
'conv3': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[384])),
'conv4': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[384])),
'conv5': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[256])),
'fc1': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[num_fc1])),
'fc2': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[num_fc2])),
'fc3': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[num_class])),
}
def model(x_image):
conv1 = tf.nn.conv2d(x_image, W_conv['conv1'], strides=[1, 4, 4, 1], padding='VALID')
conv1 = tf.nn.bias_add(conv1, b_conv['conv1'])
conv1 = tf.nn.relu(conv1)
pool1 = tf.nn.avg_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')
# print('pool.shape{})'.format(pool1.shape)) (?, 27, 27, 96)
conv2 = tf.nn.conv2d(pool1, W_conv['conv2'], strides=[1, 1, 1, 1], padding='SAME')
conv2 = tf.nn.bias_add(conv2, b_conv['conv2'])
conv2 = tf.nn.relu(conv2)
pool2 = tf.nn.avg_pool(conv2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')
# print('poo2.shape{})'.format(pool2.shape)) (?, 13, 13, 256)
conv3 = tf.nn.conv2d(pool2, W_conv['conv3'], strides=[1, 1, 1, 1], padding='SAME')
conv3 = tf.nn.bias_add(conv3, b_conv['conv3'])
conv3 = tf.nn.relu(conv3)
pool3 = tf.nn.avg_pool(conv3, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='VALID')
# print('poo3.shape{})'.format(pool3.shape)) (?, 11, 11, 384)
conv4 = tf.nn.conv2d(pool3, W_conv['conv4'], strides=[1, 1, 1, 1], padding='SAME')
conv4 = tf.nn.bias_add(conv4, b_conv['conv4'])
conv4 = tf.nn.relu(conv4)
# print('conv4.shape{})'.format(conv4.shape)) (?, 11, 11, 384)
conv5 = tf.nn.conv2d(conv4, W_conv['conv5'], strides=[1, 1, 1, 1], padding='SAME')
conv5 = tf.nn.bias_add(conv5, b_conv['conv5'])
conv5 = tf.nn.relu(conv5)
pool5 = tf.nn.avg_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID')
# print(pool5.shape) (?, 5, 5, 256)
reshaped = tf.reshape(pool5, (-1, 5 * 5 * 256))
fc1 = tf.add(tf.matmul(reshaped, W_conv['fc1']), b_conv['fc1'])
fc1 = tf.nn.relu(fc1)
fc1 = tf.nn.dropout(fc1, 0.5)
fc2 = tf.add(tf.matmul(fc1, W_conv['fc2']), b_conv['fc2'])
fc2 = tf.nn.relu(fc2)
fc2 = tf.nn.dropout(fc2, 0.5)
fc3 = tf.add(tf.matmul(fc2, W_conv['fc3']), b_conv['fc3'])
return fc3
- train.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author:Dr.Shang
import tensorflow as tf
import matplotlib.pyplot as plt
import time
import os
# 这是之前写的文件
import GetImageLabel
import GetBatch
import ReadDataFromTFR
import model
import OneHot
image_size = 227
num_class = 2
lr = 0.001
epoch = 2000
x = tf.placeholder(tf.float32, [None, image_size, image_size, 3])
y = tf.placeholder(tf.int64, [None, num_class])
def train(image_batch, label_batch,val_Xbatch, val_ybatch):
fc3 = model.model(x)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=fc3, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=lr).minimize(loss)
correct_pred = tf.equal(tf.argmax(y, 1), tf.argmax(fc3, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
save_model = './model'
save_log = './log'
save_plt = './plt'
max_acc = 0
if not os.path.exists(save_model):
print('模型保存目录{}不存在,正在创建……'.format(save_model))
os.mkdir(save_model)
print('创建成功')
if not os.path.exists(save_log):
print('日志保存目录{}不存在,正在创建……'.format(save_log))
os.mkdir(save_log)
print('创建成功')
if not os.path.exists(save_plt):
print('损失可视化保存目录{}不存在,正在创建……'.format(save_plt))
os.mkdir(save_plt)
print('创建成功')
save_model += (os.sep + 'AlexNet.ckpt')
save_plt += (os.sep + 'Alexnet.png')
train_writer = tf.summary.FileWriter(save_log, sess.graph)
saver = tf.train.Saver()
losses = []
acc = []
start_time = time.time()
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(epoch):
image, label = sess.run([image_batch, label_batch]) # 注意 【】
labels = OneHot.onehot(label)
train_dict = {x: image, y: labels}
val_image, val_label = sess.run([val_Xbatch, val_ybatch]) # 注意 【】
val_labels = OneHot.onehot(val_label)
val_dict = {x: val_image, y: val_labels}
sess.run(optimizer, feed_dict=train_dict)
loss_record = sess.run(loss, feed_dict=train_dict)
acc_record = sess.run(accuracy, feed_dict=val_dict)
losses.append(loss_record)
acc.append(acc_record)
if acc_record > max_acc:
max_acc = acc_record
if i % 100 == 0:
print('正在训练,请稍后……')
print('now the loss is {}'.format(loss_record))
print('now the acc is {}'.format(acc_record))
end_time = time.time()
print('runing time is {}:'.format(end_time - start_time))
start_time = end_time
print('----------{} epoch is finished----------'.format(i))
print('最大精确度为{}'.format(max_acc))
print('训练完成,模型正在保存……')
saver.save(sess, save_model)
print('模型保存成功')
coord.request_stop()
coord.join()
plt.figure(figsize=(10, 4))
plt.subplot(1, 2, 1)
plt.plot(losses)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.subplot(1, 2, 2)
plt.plot(acc)
plt.xlabel('epoch')
plt.ylabel('acc')
plt.tight_layout()
plt.savefig(save_plt, dpi=200)
plt.show()
if __name__ == '__main__':
tfrecords = './TFRecord/train/train.tfrecords'
file_train = './resized_images/train'
file_val = './resized_images/validation'
# image_batch, label_batch = ReadDataFromTFR.read_and_decode(tfrecords, 32)
X_train, y_train = GetImageLabel.get_file(file_train)
train_Xbatch, train_ybatch = GetBatch.get_batch(X_train, y_train, 227, 64, 200)
X_val, y_val = GetImageLabel.get_file(file_val)
val_Xbatch, val_ybatch = GetBatch.get_batch(X_val, y_val, 227, 64, 200)
train(train_Xbatch, train_ybatch, val_Xbatch, val_ybatch)
- test.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# author:Dr.Shang
import tensorflow as tf
from PIL import Image
import numpy as np
import model
def per_calss(imagefile):
image = Image.open(imagefile)
image = image.resize([227, 227])
image_array = np.array(image)
image = tf.cast(image_array, tf.float32)
image = tf.image.per_image_standardization(image)
image = tf.reshape(image, [1, 227, 227, 3])
saver = tf.train.Saver()
with tf.Session() as sess:
save_model = tf.train.latest_checkpoint('./model')
saver.restore(sess, save_model)
image = sess.run(image)
image_size = 227
x = tf.placeholder(tf.float32, [None, image_size, image_size, 3])
fc3 = model.model(x)
prediction = sess.run(fc3, feed_dict={x : image})
max_index = np.argmax(prediction)
if max_index == 0:
return 'cat'
else:
return 'dog'
if __name__ == '__main__':
print(per_calss('./resized_images/test/cats/cat.1512.jpg'))
最后
以上就是大方银耳汤为你收集整理的【Tensorflow实战】一步步创建AlexNet模型识别猫和狗的全部内容,希望文章能够帮你解决【Tensorflow实战】一步步创建AlexNet模型识别猫和狗所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复