概述
场上数据很水,比较暴力的做法都可以过90分以上,下面说几个做法。
1. 暴力枚举所有最大独立集,对每个独立集分别DP。复杂度玄学,但是由于最大独立集并不多,所以可以拿90.
2. dp[S][k]表示考虑到排列的第k位,当前独立集为S的方案数,枚举第k+1位,根据是否与S相连转移到dp[S][k+1]或dp[S | a[k+1]][k+1]。$O(n^22^n)$
3. dp[S]表示排列的状态为S时的正确率,mx[S]表示排列状态为S时能得到的最大独立集大小,考虑转移,枚举排列里最后一个在独立集中的点i∈S,从S中删去所有与i相连的点得到S',若mx[S]<mx[S']+1则更新mx[S],dp[S]清零,否则累加。注意到每个排列都是等概率出现的,所以最后直接除以|S|即可。 $O(n2^n)$
方法一:
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 #define rep(i,l,r) for (int i=(l); i<=(r); i++) 5 #define ll long long 6 using namespace std; 7 8 const int N=1<<22,mod=998244353; 9 ll n,m,x,y,s[25],p[25],f[N][25],cnt,mx,v[N],num[N],t[N],ans,o[N]; 10 11 int main(){ 12 freopen("walk.in","r",stdin); 13 freopen("walk.out","w",stdout); 14 scanf("%lld%lld",&n,&m); 15 p[1]=1; rep(i,2,n) p[i]=p[i-1]<<1; 16 rep(i,1,m) scanf("%lld%lld",&x,&y),s[x]|=p[y],s[y]|=p[x]; 17 cnt=(1<<n)-1; f[0][0]=1; 18 rep(i,0,cnt){ 19 ll tmp=0; v[i]=1; 20 rep(j,1,n) if ((i&p[j])&&(s[j]&i)) v[i]=0; 21 if (v[i]){ 22 rep(j,1,n) if (i&p[j]) tmp++,t[i]|=s[j]; 23 num[i]=tmp; mx=max(mx,tmp); 24 tmp=0; 25 rep(j,1,n) if (t[i]&p[j]) tmp++; 26 o[i]=tmp; 27 } 28 } 29 rep(i,0,cnt) if (v[i]) 30 rep(j,0,o[i]){ 31 if (j!=o[i]) f[i][j+1]=(f[i][j+1]+f[i][j]*(o[i]-j))%mod; 32 rep(k,1,n) if (!(i&p[k])&&!(p[k]&t[i])) f[i|p[k]][j]=(f[i|p[k]][j]+f[i][j])%mod; 33 if (num[i]==mx && j==o[i]) ans=(ans+f[i][j])%mod; 34 } 35 printf("%lldn",ans); 36 return 0; 37 }
方法二:
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 #include<cstdlib> 5 #include<cstring> 6 #include<algorithm> 7 using namespace std; 8 int read() 9 { 10 int x=0,f=1;char c=getchar(); 11 while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} 12 while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); 13 return x*f; 14 } 15 #define P 998244353 16 #define N 21 17 #define t (1<<n) 18 int n,m; 19 long long ans=0; 20 bool flag[1<<(N-1)]; 21 int s[1<<(N-1)],w[N],v[1<<(N-1)],cnt[1<<(N-1)],tot[1<<(N-1)],f[21][1<<(N-1)],maximum=1; 22 int main() 23 { 24 freopen("walk.in","r",stdin); 25 freopen("walk.out","w",stdout); 26 n=read(),m=read(); 27 for (int i=1;i<=n;i++) w[i]=1<<(i-1),s[w[i]]=w[i]; 28 for (int i=1;i<=m;i++) 29 { 30 int x=read(),y=read(); 31 s[w[x]]|=w[y],s[w[y]]|=w[x]; 32 } 33 flag[0]=1; 34 for (int i=0;i<t;i++) 35 if (flag[i]) 36 for (int j=1;j<=n;j++) 37 if (!(w[j]&s[i])) 38 { 39 flag[i|w[j]]=1,s[i|w[j]]=s[i]|s[w[j]],cnt[i|w[j]]=cnt[i]+1; 40 if (cnt[i]>=maximum) maximum=cnt[i|w[j]]; 41 } 42 for (int i=0;i<t;i++) 43 { 44 s[i]=(~s[i])&(t-1); 45 register int k=s[i]; 46 while (k) k^=k&-k,tot[i]++; 47 v[i]=i&-i; 48 } 49 f[0][0]=1; 50 for (register int i=0;i<n;i++) 51 for (register int j=0;j<t;j++) 52 if (f[i][j]) 53 { 54 for (register int k=s[j];k;k^=v[k]) 55 f[i+1][j|v[k]]=(f[i+1][j|v[k]]+f[i][j])%P; 56 f[i+1][j]=(1ll*f[i][j]*(n-i-tot[j])+f[i+1][j])%P; 57 } 58 for (int i=0;i<t;i++) if (cnt[i]==maximum) ans=(ans+f[n][i])%P; 59 cout<<ans; 60 fclose(stdin);fclose(stdout); 61 return 0; 62 }
方法三:
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 #define rep(i,l,r) for (int i=l; i<=r; i++) 5 typedef long long ll; 6 using namespace std; 7 8 const int N=21,mod=998244353; 9 int n,m,x,y,inv[N],f[N],mx[1<<N],F[1<<N]; 10 11 int main(){ 12 scanf("%d%d",&n,&m); 13 rep(i,1,m) scanf("%d%d",&x,&y),x--,y--,f[x]|=1<<y,f[y]|=1<<x; 14 inv[1]=1; f[0]|=1; F[0]=1; 15 rep(i,2,n) f[i-1]|=(1<<(i-1)),inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod; 16 for (int i=1; i<(1<<n); i++){ 17 int tot=0; 18 for (int j=0; j<n; j++) if (i&(1<<j)){ 19 int s=i&(~f[j]); 20 if (mx[i]<mx[s]+1) mx[i]=mx[s]+1,F[i]=0; 21 if (mx[i]==mx[s]+1) F[i]=(F[i]+F[s])%mod; 22 tot++; 23 } 24 F[i]=1ll*F[i]*inv[tot]%mod; 25 } 26 printf("%dn",F[(1<<n)-1]); 27 return 0; 28 }
转载于:https://www.cnblogs.com/HocRiser/p/9059172.html
最后
以上就是如意飞机为你收集整理的[LOJ#2540][PKUWC2018]随机算法(概率DP)的全部内容,希望文章能够帮你解决[LOJ#2540][PKUWC2018]随机算法(概率DP)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复