概述
一、所有性能测试结论都是片面的
性能测试是必要的,但针对性能测试的结果,永远要持怀疑态度。为什么这么说?
性能测试脱离业务场景就是片面的性能测试。你能覆盖所有的业务场景么?
性能测试脱离硬件环境就是片面的性能测试。你能覆盖所有的硬件环境么?
性能测试脱离开发人员的知识面就是片面的性能测试。你能覆盖各种开发人员奇奇怪怪的代码么?
所以,我从来不相信网上的任何性能测试的文章。凡是我自己的从事的业务场景,我都要在接近生产环境的机器上自己测试一遍。 所有性能测试结论都是片面的,只有你生产环境下的运行结果才是真的。
二、动手测试Stream的性能
3.1.环境
windows10 、16G内存、i7-7700HQ 2.8HZ 、64位操作系统、JDK 1.8.0_171
3.2.测试用例与测试结论
我们在上一节,已经讲过:
- 针对不同的数据结构,Stream流的执行效率是不一样的
- 针对不同的数据源,Stream流的执行效率也是不一样的
所以记住笔者的话:所有性能测试结论都是片面的,你要自己动手做,相信你自己的代码和你的环境下的测试!我的测试结果仅仅代表我自己的测试用例和测试数据结构!
3.2.1.测试用例一
测试用例:5亿个int随机数,求最小值测试结论(测试代码见后文):
使用普通for循环,执行效率是Stream串行流的2倍。也就是说普通for循环性能更好。
Stream并行流计算是普通for循环执行效率的4-5倍。
Stream并行流计算 > 普通for循环 > Stream串行流计算
3.2.测试用例二
测试用例:长度为10的1000000随机字符串,求最小值测试结论(测试代码见后文):
普通for循环执行效率与Stream串行流不相上下
Stream并行流的执行效率远高于普通for循环
Stream并行流计算 > 普通for循环 = Stream串行流计算
3.3.测试用例三
测试用例:10个用户,每人200个订单。按用户统计订单的总价。测试结论(测试代码见后文):
Stream并行流的执行效率远高于普通for循环
Stream串行流的执行效率大于等于普通for循环
Stream并行流计算 > Stream串行流计算 >= 普通for循环
四、最终测试结论
- 对于简单的数字(list-Int)遍历,普通for循环效率的确比Stream串行流执行效率高(1.5-2.5倍)。但是Stream流可以利用并行执行的方式发挥CPU的多核优势,因此并行流计算执行效率高于for循环。
- 对于list-Object类型的数据遍历,普通for循环和Stream串行流比也没有任何优势可言,更不用提Stream并行流计算。
虽然在不同的场景、不同的数据结构、不同的硬件环境下。Stream流与for循环性能测试结果差异较大,甚至发生逆转。但是总体上而言:
- Stream并行流计算 >> 普通for循环 ~= Stream串行流计算 (之所以用两个大于号,你细品)
- 数据容量越大,Stream流的执行效率越高。
- Stream并行流计算通常能够比较好的利用CPU的多核优势。CPU核心越多,Stream并行流计算效率越高。
stream比for循环慢5倍?也许吧,单核CPU、串行Stream的int类型数据遍历?我没试过这种场景,但是我知道这不是应用系统的核心场景。看了十几篇测试博文,和我的测试结果。我的结论是: 在大多数的核心业务场景下及常用数据结构下,Stream的执行效率比for循环更高。 毕竟我们的业务中通常是实实在在的实体对象,没事谁总对List<Int>类型进行遍历?谁的生产服务器是单核?。
五、测试代码
<dependency>
<groupId>com.github.houbb</groupId>
<artifactId>junitperf</artifactId>
<version>2.0.0</version>
</dependency>
测试用例一:
import com.github.houbb.junitperf.core.annotation.JunitPerfConfig;
import com.github.houbb.junitperf.core.report.impl.HtmlReporter;
import org.junit.jupiter.api.BeforeAll;
import java.util.Arrays;
import java.util.Random;
public class StreamIntTest {
public static int[] arr;
@BeforeAll
public static void init() {
arr = new int[500000000]; //5亿个随机Int
randomInt(arr);
}
@JunitPerfConfig( warmUp = 1000, reporter = {HtmlReporter.class})
public void testIntFor() {
minIntFor(arr);
}
@JunitPerfConfig( warmUp = 1000, reporter = {HtmlReporter.class})
public void testIntParallelStream() {
minIntParallelStream(arr);
}
@JunitPerfConfig( warmUp = 1000, reporter = {HtmlReporter.class})
public void testIntStream() {
minIntStream(arr);
}
private int minIntStream(int[] arr) {
return Arrays.stream(arr).min().getAsInt();
}
private int minIntParallelStream(int[] arr) {
return Arrays.stream(arr).parallel().min().getAsInt();
}
private int minIntFor(int[] arr) {
int min = Integer.MAX_VALUE;
for (int anArr : arr) {
if (anArr < min) {
min = anArr;
}
}
return min;
}
private static void randomInt(int[] arr) {
Random r = new Random();
for (int i = 0; i < arr.length; i++) {
arr[i] = r.nextInt();
}
}
}
测试用例二:
import com.github.houbb.junitperf.core.annotation.JunitPerfConfig;
import com.github.houbb.junitperf.core.report.impl.HtmlReporter;
import org.junit.jupiter.api.BeforeAll;
import java.util.ArrayList;
import java.util.Random;
public class StreamStringTest {
public static ArrayList<String> list;
@BeforeAll
public static void init() {
list = randomStringList(1000000);
}
@JunitPerfConfig(duration = 10000, warmUp = 1000, reporter = {HtmlReporter.class})
public void testMinStringForLoop(){
String minStr = null;
boolean first = true;
for(String str : list){
if(first){
first = false;
minStr = str;
}
if(minStr.compareTo(str)>0){
minStr = str;
}
}
}
@JunitPerfConfig(duration = 10000, warmUp = 1000, reporter = {HtmlReporter.class})
public void textMinStringStream(){
list.stream().min(String::compareTo).get();
}
@JunitPerfConfig(duration = 10000, warmUp = 1000, reporter = {HtmlReporter.class})
public void testMinStringParallelStream(){
list.stream().parallel().min(String::compareTo).get();
}
private static ArrayList<String> randomStringList(int listLength){
ArrayList<String> list = new ArrayList<>(listLength);
Random rand = new Random();
int strLength = 10;
StringBuilder buf = new StringBuilder(strLength);
for(int i=0; i<listLength; i++){
buf.delete(0, buf.length());
for(int j=0; j<strLength; j++){
buf.append((char)('a'+ rand.nextInt(26)));
}
list.add(buf.toString());
}
return list;
}
}
测试用例三:
import com.github.houbb.junitperf.core.annotation.JunitPerfConfig;
import com.github.houbb.junitperf.core.report.impl.HtmlReporter;
import org.junit.jupiter.api.BeforeAll;
import java.util.*;
import java.util.stream.Collectors;
public class StreamObjectTest {
public static List<Order> orders;
@BeforeAll
public static void init() {
orders = Order.genOrders(10);
}
@JunitPerfConfig(duration = 10000, warmUp = 1000, reporter = {HtmlReporter.class})
public void testSumOrderForLoop(){
Map<String, Double> map = new HashMap<>();
for(Order od : orders){
String userName = od.getUserName();
Double v;
if((v=map.get(userName)) != null){
map.put(userName, v+od.getPrice());
}else{
map.put(userName, od.getPrice());
最后
以上就是个性煎饼为你收集整理的Stream性能差?拜托你们不要人云亦云一、所有性能测试结论都是片面的二、动手测试Stream的性能3.1.环境3.2.测试用例与测试结论3.2.1.测试用例一3.2.测试用例二3.3.测试用例三四、最终测试结论五、测试代码的全部内容,希望文章能够帮你解决Stream性能差?拜托你们不要人云亦云一、所有性能测试结论都是片面的二、动手测试Stream的性能3.1.环境3.2.测试用例与测试结论3.2.1.测试用例一3.2.测试用例二3.3.测试用例三四、最终测试结论五、测试代码所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复