Problem Description
Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time.
Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2 L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2 L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
Input
Input a length L (0 <= L <= 10
6) and M.
Output
Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
Sample Input
3 8 4 7 4 8
Sample Output
6 21
矩阵快速幂。
#include<stdio.h> #include<string.h> #include<vector> #include<queue> #include<functional> using namespace std; const int maxn = 1000005; const int size = 4; int n, m, ans, f[size], p[size]; struct abc { int a[size][size]; abc(){ memset(a, 0, sizeof(a)); } void operator =(const abc&b) { memcpy(a, b.a, sizeof(a)); } abc operator *(const abc&b) { abc c; for (int i = 0; i < size;i++) for (int j = 0; j < size;j++) for (int k = 0; k < size; k++) c.a[i][k] = (c.a[i][k] + a[i][j] * b.a[j][k]) % m; return c; } }; abc get(int x) { abc a, b, c; a.a[0][1] = a.a[1][3] = a.a[2][0] = a.a[2][1] = a.a[3][2] = a.a[3][3] = 1; for (int i = 1, f = 0; x; x >>= 1) { if (x & 1) if (f) b = b * a; else b = a, f = 1; a = a * a; } return b; } int solve() { int tot = 0; abc a = get(n - 2); memset(p, 0, sizeof(p)); f[0] = f[1] = f[2] = f[3] = 1; for (int j = 0; j < size; j++) for (int k = 0; k < size; k++) p[k] = (p[k] + f[j] * a.a[j][k]) % m; for (int j = 0; j < size; j++) tot = (tot + p[j]) % m; return tot; } int main() { while (scanf("%d%d", &n, &m) == 2) { if (n <= 2){ ans = 2 * n % m; } else ans = solve(); printf("%dn", ans); } return 0; }
最后
以上就是威武河马最近收集整理的关于HDU 2604 Queuing的全部内容,更多相关HDU内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复