我是靠谱客的博主 灵巧小蘑菇,最近开发中收集的这篇文章主要介绍Dubbo 源码分析 – 集群容错之 LoadBalance,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1.简介

LoadBalance 中文意思为负载均衡,它的职责是将网络请求,或者其他形式的负载“均摊”到不同的机器上。避免集群中部分服务器压力过大,而另一些服务器比较空闲的情况。通过负载均衡,可以让每台服务器获取到适合自己处理能力的负载。在为高负载的服务器分流的同时,还可以避免资源浪费,一举两得。负载均衡可分为软件负载均衡和硬件负载均衡。在我们日常开发中,一般很难接触到硬件负载均衡。但软件负载均衡还是能够接触到一些的,比如 Nginx。在 Dubbo 中,也有负载均衡的概念和相应的实现。Dubbo 需要对服务消费者的调用请求进行分配,避免少数服务提供者负载过大。服务提供者负载过大,会导致部分服务调用超时。因此将负载均衡到每个服务提供者上,是非常必要的。Dubbo 提供了4种负载均衡实现,分别是基于权重随机算法的 RandomLoadBalance、基于最少活跃调用数算法的 LeastActiveLoadBalance、基于 hash 一致性的 ConsistentHashLoadBalance,以及基于加权轮询算法的 RoundRobinLoadBalance。这几个负载均衡算法代码不是很长,但是想看懂也不是很容易,需要大家对这几个算法的原理有一定了解才行。如果不是很了解,也没不用太担心。我会在分析每个算法的源码之前,对算法原理进行简单的讲解,帮助大家建立初步的印象。

我在写 Dubbo 源码分析系列文章之初,当时 Dubbo 最新的版本为 2.6.4。近期,Dubbo 2.6.5 发布了,其中就有对负载均衡部分代码修改。因此我在分析完 2.6.4 版本后的源码后,会另外分析 2.6.5 更新的部分。本篇文章内容非常之丰富,需要大家耐心阅读。好了,其他的就不多说了,进入正题吧。

2.源码分析

在 Dubbo 中,所有负载均衡实现类均继承自 AbstractLoadBalance,该类实现了 LoadBalance 接口方法,并封装了一些公共的逻辑。所以在分析负载均衡实现之前,先来看一下 AbstractLoadBalance 的逻辑。首先来看一下负载均衡的入口方法 select,如下:

@Override
public <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) {
    if (invokers == null || invokers.isEmpty())
        return null;
    // 如果 invokers 列表中仅有一个 Invoker,直接返回即可,无需进行负载均衡
    if (invokers.size() == 1)
        return invokers.get(0);

    // 调用 doSelect 方法进行负载均衡,该方法为抽象方法,由子类实现
    return doSelect(invokers, url, invocation);
}

protected abstract <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation);

select 方法的逻辑比较简单,首先会检测 invokers 集合的合法性,然后再检测 invokers 集合元素数量。如果只包含一个 Invoker,直接返回该 Inovker 即可。如果包含多个 Invoker,此时需要通过负载均衡算法选择一个 Invoker。具体的负载均衡算法由子类实现,接下来章节会对这些子类进行详细分析。

AbstractLoadBalance 除了实现了 LoadBalance 接口方法,还封装了一些公共逻辑 —— 服务提供者权重计算逻辑。具体实现如下:

protected int getWeight(Invoker<?> invoker, Invocation invocation) {
    // 从 url 中获取 weight 配置值
    int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
    if (weight > 0) {
        // 获取服务提供者启动时间戳
        long timestamp = invoker.getUrl().getParameter(Constants.REMOTE_TIMESTAMP_KEY, 0L);
        if (timestamp > 0L) {
            // 计算服务提供者运行时长
            int uptime = (int) (System.currentTimeMillis() - timestamp);
            // 获取服务预热时间,默认为10分钟
            int warmup = invoker.getUrl().getParameter(Constants.WARMUP_KEY, Constants.DEFAULT_WARMUP);
            // 如果服务运行时间小于预热时间,则重新计算服务权重,即降权
            if (uptime > 0 && uptime < warmup) {
                // 重新计算服务权重
                weight = calculateWarmupWeight(uptime, warmup, weight);
            }
        }
    }
    return weight;
}

static int calculateWarmupWeight(int uptime, int warmup, int weight) {
    // 计算权重,下面代码逻辑上形似于 (uptime / warmup) * weight。
    // 随着服务运行时间 uptime 增大,权重计算值 ww 会慢慢接近配置值 weight
    int ww = (int) ((float) uptime / ((float) warmup / (float) weight));
    return ww < 1 ? 1 : (ww > weight ? weight : ww);
}

上面是权重的计算过程,该过程主要用于保证当服务运行时长小于服务预热时间时,对服务进行降权,避免让服务在启动之初就处于高负载状态。服务预热是一个优化手段,与此类似的还有 JVM 预热。主要目的是让服务启动后“低功率”运行一段时间,使其效率慢慢提升至最佳状态。关于预热方面的更多知识,大家感兴趣可以自己搜索一下。

关于 AbstractLoadBalance 就先分析到这,接下来分析各个实现类的代码。首先,我们从 Dubbo 缺省的实现类 RandomLoadBalance 看起。

2.1 RandomLoadBalance

RandomLoadBalance 是加权随机算法的具体实现,它的算法思想很简单。假设我们有一组服务器 servers = [A, B, C],他们对应的权重为 weights = [5, 3, 2],权重总和为10。现在把这些权重值平铺在一维坐标值上,[0, 5) 区间属于服务器 A,[5, 8) 区间属于服务器 B,[8, 10) 区间属于服务器 C。接下来通过随机数生成器生成一个范围在 [0, 10) 之间的随机数,然后计算这个随机数会落到哪个区间上。比如数字3会落到服务器 A 对应的区间上,此时返回服务器 A 即可。权重越大的机器,在坐标轴上对应的区间范围就越大,因此随机数生成器生成的数字就会有更大的概率落到此区间内。只要随机数生成器产生的随机数分布性很好,在经过多次选择后,每个服务器被选中的次数比例接近其权重比例。比如,经过一万次选择后,服务器 A 被选中的次数大约为5000次,服务器 B 被选中的次数约为3000次,服务器 C 被选中的次数约为2000次。

以上就是 RandomLoadBalance 背后的算法思想,比较简单,不多说了,下面开始分析源码。

public class RandomLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "random";

    private final Random random = new Random();

    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        int length = invokers.size();
        int totalWeight = 0;
        boolean sameWeight = true;
        // 下面这个循环有两个作用,第一是计算总权重 totalWeight,
        // 第二是检测每个服务提供者的权重是否相同,若不相同,则将 sameWeight 置为 false
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            // 累加权重
            totalWeight += weight;
            // 检测当前服务提供者的权重与上一个服务提供者的权重是否相同,
            // 不相同的话,则将 sameWeight 置为 false。
            if (sameWeight && i > 0
                    && weight != getWeight(invokers.get(i - 1), invocation)) {
                sameWeight = false;
            }
        }

        // 下面的 if 分支主要用于获取随机数,并计算随机数落在哪个区间上
        if (totalWeight > 0 && !sameWeight) {
            // 随机获取一个 [0, totalWeight) 之间的数字
            int offset = random.nextInt(totalWeight);
            // 循环让 offset 数减去服务提供者权重值,当 offset 小于0时,返回相应的 Invoker。
            // 还是用上面的例子进行说明,servers = [A, B, C],weights = [5, 3, 2],offset = 7。
            // 第一次循环,offset - 5 = 2 > 0,说明 offset 肯定不会落在服务器 A 对应的区间上。
            // 第二次循环,offset - 3 = -1 < 0,表明 offset 落在服务器 B 对应的区间上
            for (int i = 0; i < length; i++) {
                // 让随机值 offset 减去权重值
                offset -= getWeight(invokers.get(i), invocation);
                if (offset < 0) {
                    // 返回相应的 Invoker
                    return invokers.get(i);
                }
            }
        }

        // 如果所有服务提供者权重值相同,此时直接随机返回一个即可
        return invokers.get(random.nextInt(length));
    }
}

RandomLoadBalance 的算法思想比较简单,在经过多次请求后,能够将调用请求按照权重值进行“均匀”分配。当然 RandomLoadBalance 也存在一定的缺点,当调用次数比较少时,Random 产生的随机数可能会比较集中,此时多数请求会落到同一台服务器上。这个缺点并不是很严重,多数情况下可以忽略。RandomLoadBalance 是一个简单,高效的负载均衡实现,因此 Dubbo 选择它作为缺省实现。

关于 RandomLoadBalance 就先到这了,接下来分析 LeastActiveLoadBalance。

2.2 LeastActiveLoadBalance

LeastActiveLoadBalance 翻译过来是最小活跃数负载均衡,所谓的最小活跃数可理解为最少连接数。即服务提供者目前正在处理的请求数(一个请求对应一条连接)最少,表明该服务提供者效率高,单位时间内可处理更多的请求。此时应优先将请求分配给该服务提供者。在具体实现中,每个服务提供者对应一个活跃数 active。初始情况下,所有服务提供者活跃数均为0。每收到一个请求,活跃数加1,完成请求后则将活跃数减1。在服务运行一段时间后,性能好的服务提供者处理请求的速度更快,因此活跃数下降的也越快。此时这样的服务提供者能够优先获取到新的服务请求,这就是最小活跃数负载均衡算法的基本思想。除了最小活跃数,LeastActiveLoadBalance 在实现上还引入了权重值。所以准确的来说,LeastActiveLoadBalance 是基于加权最小活跃数算法实现的。举个例子说明一下,在一个服务提供者集群中,有两个性能优异的服务提供者。某一时刻它们的活跃数相同,此时 Dubbo 会根据它们的权重去分配请求,权重越大,获取到新请求的可能性就越大。如果两个服务提供者权重相同,此时随机选择一个即可。关于 LeastActiveLoadBalance 的背景知识就先介绍到这里,下面开始分析源码。

public class LeastActiveLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "leastactive";

    private final Random random = new Random();

    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        int length = invokers.size();
        // 最小的活跃数
        int leastActive = -1;
        // 具有相同“最小活跃数”的服务者提供者(以下用 Invoker 代称)数量
        int leastCount = 0; 
        // leastIndexs 用于记录具有相同“最小活跃数”的 Invoker 在 invokers 列表中的下标信息
        int[] leastIndexs = new int[length];
        int totalWeight = 0;
        // 第一个最小活跃数的 Invoker 权重值,用于与其他具有相同最小活跃数的 Invoker 的权重进行对比,
        // 以检测是否所有具有相同最小活跃数的 Invoker 的权重均相等
        int firstWeight = 0;
        boolean sameWeight = true;

        // 遍历 invokers 列表
        for (int i = 0; i < length; i++) {
            Invoker<T> invoker = invokers.get(i);
            // 获取 Invoker 对应的活跃数
            int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive();
            // 获取权重 - ⭐️
            int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
            // 发现更小的活跃数,重新开始
            if (leastActive == -1 || active < leastActive) {
                // 使用当前活跃数 active 更新最小活跃数 leastActive
                leastActive = active;
                // 更新 leastCount 为 1
                leastCount = 1;
                // 记录当前下标值到 leastIndexs 中
                leastIndexs[0] = i;
                totalWeight = weight;
                firstWeight = weight;
                sameWeight = true;

            // 当前 Invoker 的活跃数 active 与最小活跃数 leastActive 相同 
            } else if (active == leastActive) {
                // 在 leastIndexs 中记录下当前 Invoker 在 invokers 集合中的下标
                leastIndexs[leastCount++] = i;
                // 累加权重
                totalWeight += weight;
                // 检测当前 Invoker 的权重与 firstWeight 是否相等,
                // 不相等则将 sameWeight 置为 false
                if (sameWeight && i > 0
                    && weight != firstWeight) {
                    sameWeight = false;
                }
            }
        }

        // 当只有一个 Invoker 具有最小活跃数,此时直接返回该 Invoker 即可
        if (leastCount == 1) {
            return invokers.get(leastIndexs[0]);
        }

        // 有多个 Invoker 具有相同的最小活跃数,但他们的权重不同
        if (!sameWeight && totalWeight > 0) {
            // 随机获取一个 [0, totalWeight) 之间的数字
            int offsetWeight = random.nextInt(totalWeight);
            // 循环让随机数减去具有最小活跃数的 Invoker 的权重值,
            // 当 offset 小于等于0时,返回相应的 Invoker
            for (int i = 0; i < leastCount; i++) {
                int leastIndex = leastIndexs[i];
                // 获取权重值,并让随机数减去权重值 - ⭐️
                offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
                if (offsetWeight <= 0)
                    return invokers.get(leastIndex);
            }
        }
        // 如果权重相同或权重为0时,随机返回一个 Invoker
        return invokers.get(leastIndexs[random.nextInt(leastCount)]);
    }
}

如上,为了帮助大家理解代码,我在上面的代码中写了大量的注释。下面简单总结一下以上代码所做的事情,如下:

  1. 遍历 invokers 列表,寻找活跃数最小的 Invoker
  2. 如果有多个 Invoker 具有相同的最小活跃数,此时记录下这些 Invoker 在 invokers 集合中的下标,以及累加它们的权重,比较它们之间的权重值是否相等
  3. 如果只有一个 Invoker 具有最小的活跃数,此时直接返回该 Invoker 即可
  4. 如果有多个 Invoker 具有最小活跃数,且它们的权重不相等,此时处理方式和 RandomLoadBalance 一致
  5. 如果有多个 Invoker 具有最小活跃数,但它们的权重相等,此时随机返回一个即可

以上就是 LeastActiveLoadBalance 大致的实现逻辑,大家在阅读的源码的过程中要注意区分活跃数与权重这两个概念,不要混为一谈。

以上分析是基于 Dubbo 2.6.4 版本进行了,由于近期 Dubbo 2.6.5 发布了,对负载均衡部分的代码进行了一些更新。这其中就包含了本节分析的 LeastActiveLoadBalance,所以下面简单说明一下 Dubbo 2.6.5 对 LeastActiveLoadBalance 进行了怎样的修改。回到上面的源码中,我在上面的代码中标注了两个黄色的五角星⭐️。两处标记对应的代码分别如下:

int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
offsetWeight -= getWeight(invokers.get(leastIndex), invocation);

问题出在服务预热阶段,第一行代码直接从 url 中去权重值,未被降权过。第二行代码获取到的是经过降权后的权重。第一行代码获取到的权重值最终会被累加到权重总和 totalWeight 中,这个时候会导致一个问题。offsetWeight 是一个在 [0, totalWeight) 范围内的随机数,而它所减去的是经过降权的权重。很有可能在经过 leastCount 次运算后,offsetWeight 仍然是大于0的,导致无法选中 Invoker。这个问题对应的 issue 为 #904,在 pull request #2172 中被修复。具体的修复逻辑是将标注一处的代码修改为:

// afterWarmup 等价于上面的 weight 变量,这样命名是为了强调该变量经过 warmup 降权处理了
int afterWarmup = getWeight(invoker, invocation);

另外,2.6.4 版本中的 LeastActiveLoadBalance 还要一个缺陷,即当一组 Invoker 具有相同的最小活跃数,且其中一个 Invoker 的权重值为1,此时这个 Invoker 无法被选中。缺陷代码如下:

int offsetWeight = random.nextInt(totalWeight);
for (int i = 0; i < leastCount; i++) {
    int leastIndex = leastIndexs[i];
    offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
    if (offsetWeight <= 0)    // ❌
        return invokers.get(leastIndex);
}

问题就出在了offsetWeight <= 0上,举例说明,假设有一组 Invoker 的权重为 5、2、1,offsetWeight 最大值为 7。假设 offsetWeight = 7,你会发现,当 for 循环进行第二次遍历后 offsetWeight = 7 – 5 – 2 = 0,提前返回了。此时,权重为1的 Invoker 就没有机会被选中。这个修改起来也不难,可以将 offsetWeight < 0,不过 Dubbo 的是将offsetWeight + 1,也就是:

int offsetWeight = random.nextInt(totalWeight) + 1;

两种改动都行,不过我认为觉得第一种方式更好一点,可与 RandomLoadBalance 逻辑保持一致。这里+1有点突兀,大家读到这里要特地思考一下为什么要+1。

以上就是 Dubob 2.6.5 对 LeastActiveLoadBalance 的更新,不是很难理解,就不多说了。接下来分析基于一致性 hash 思想的 ConsistentHashLoadBalance。

最后

以上就是灵巧小蘑菇为你收集整理的Dubbo 源码分析 – 集群容错之 LoadBalance的全部内容,希望文章能够帮你解决Dubbo 源码分析 – 集群容错之 LoadBalance所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(48)

评论列表共有 0 条评论

立即
投稿
返回
顶部