概述
1.简介
LoadBalance 中文意思为负载均衡,它的职责是将网络请求,或者其他形式的负载“均摊”到不同的机器上。避免集群中部分服务器压力过大,而另一些服务器比较空闲的情况。通过负载均衡,可以让每台服务器获取到适合自己处理能力的负载。在为高负载的服务器分流的同时,还可以避免资源浪费,一举两得。负载均衡可分为软件负载均衡和硬件负载均衡。在我们日常开发中,一般很难接触到硬件负载均衡。但软件负载均衡还是能够接触到一些的,比如 Nginx。在 Dubbo 中,也有负载均衡的概念和相应的实现。Dubbo 需要对服务消费者的调用请求进行分配,避免少数服务提供者负载过大。服务提供者负载过大,会导致部分服务调用超时。因此将负载均衡到每个服务提供者上,是非常必要的。Dubbo 提供了4种负载均衡实现,分别是基于权重随机算法的 RandomLoadBalance、基于最少活跃调用数算法的 LeastActiveLoadBalance、基于 hash 一致性的 ConsistentHashLoadBalance,以及基于加权轮询算法的 RoundRobinLoadBalance。这几个负载均衡算法代码不是很长,但是想看懂也不是很容易,需要大家对这几个算法的原理有一定了解才行。如果不是很了解,也没不用太担心。我会在分析每个算法的源码之前,对算法原理进行简单的讲解,帮助大家建立初步的印象。
我在写 Dubbo 源码分析系列文章之初,当时 Dubbo 最新的版本为 2.6.4。近期,Dubbo 2.6.5 发布了,其中就有对负载均衡部分代码修改。因此我在分析完 2.6.4 版本后的源码后,会另外分析 2.6.5 更新的部分。本篇文章内容非常之丰富,需要大家耐心阅读。好了,其他的就不多说了,进入正题吧。
2.源码分析
在 Dubbo 中,所有负载均衡实现类均继承自 AbstractLoadBalance,该类实现了 LoadBalance 接口方法,并封装了一些公共的逻辑。所以在分析负载均衡实现之前,先来看一下 AbstractLoadBalance 的逻辑。首先来看一下负载均衡的入口方法 select,如下:
@Override
public <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) {
if (invokers == null || invokers.isEmpty())
return null;
// 如果 invokers 列表中仅有一个 Invoker,直接返回即可,无需进行负载均衡
if (invokers.size() == 1)
return invokers.get(0);
// 调用 doSelect 方法进行负载均衡,该方法为抽象方法,由子类实现
return doSelect(invokers, url, invocation);
}
protected abstract <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation);
select 方法的逻辑比较简单,首先会检测 invokers 集合的合法性,然后再检测 invokers 集合元素数量。如果只包含一个 Invoker,直接返回该 Inovker 即可。如果包含多个 Invoker,此时需要通过负载均衡算法选择一个 Invoker。具体的负载均衡算法由子类实现,接下来章节会对这些子类进行详细分析。
AbstractLoadBalance 除了实现了 LoadBalance 接口方法,还封装了一些公共逻辑 —— 服务提供者权重计算逻辑。具体实现如下:
protected int getWeight(Invoker<?> invoker, Invocation invocation) {
// 从 url 中获取 weight 配置值
int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
if (weight > 0) {
// 获取服务提供者启动时间戳
long timestamp = invoker.getUrl().getParameter(Constants.REMOTE_TIMESTAMP_KEY, 0L);
if (timestamp > 0L) {
// 计算服务提供者运行时长
int uptime = (int) (System.currentTimeMillis() - timestamp);
// 获取服务预热时间,默认为10分钟
int warmup = invoker.getUrl().getParameter(Constants.WARMUP_KEY, Constants.DEFAULT_WARMUP);
// 如果服务运行时间小于预热时间,则重新计算服务权重,即降权
if (uptime > 0 && uptime < warmup) {
// 重新计算服务权重
weight = calculateWarmupWeight(uptime, warmup, weight);
}
}
}
return weight;
}
static int calculateWarmupWeight(int uptime, int warmup, int weight) {
// 计算权重,下面代码逻辑上形似于 (uptime / warmup) * weight。
// 随着服务运行时间 uptime 增大,权重计算值 ww 会慢慢接近配置值 weight
int ww = (int) ((float) uptime / ((float) warmup / (float) weight));
return ww < 1 ? 1 : (ww > weight ? weight : ww);
}
上面是权重的计算过程,该过程主要用于保证当服务运行时长小于服务预热时间时,对服务进行降权,避免让服务在启动之初就处于高负载状态。服务预热是一个优化手段,与此类似的还有 JVM 预热。主要目的是让服务启动后“低功率”运行一段时间,使其效率慢慢提升至最佳状态。关于预热方面的更多知识,大家感兴趣可以自己搜索一下。
关于 AbstractLoadBalance 就先分析到这,接下来分析各个实现类的代码。首先,我们从 Dubbo 缺省的实现类 RandomLoadBalance 看起。
2.1 RandomLoadBalance
RandomLoadBalance 是加权随机算法的具体实现,它的算法思想很简单。假设我们有一组服务器 servers = [A, B, C],他们对应的权重为 weights = [5, 3, 2],权重总和为10。现在把这些权重值平铺在一维坐标值上,[0, 5) 区间属于服务器 A,[5, 8) 区间属于服务器 B,[8, 10) 区间属于服务器 C。接下来通过随机数生成器生成一个范围在 [0, 10) 之间的随机数,然后计算这个随机数会落到哪个区间上。比如数字3会落到服务器 A 对应的区间上,此时返回服务器 A 即可。权重越大的机器,在坐标轴上对应的区间范围就越大,因此随机数生成器生成的数字就会有更大的概率落到此区间内。只要随机数生成器产生的随机数分布性很好,在经过多次选择后,每个服务器被选中的次数比例接近其权重比例。比如,经过一万次选择后,服务器 A 被选中的次数大约为5000次,服务器 B 被选中的次数约为3000次,服务器 C 被选中的次数约为2000次。
以上就是 RandomLoadBalance 背后的算法思想,比较简单,不多说了,下面开始分析源码。
public class RandomLoadBalance extends AbstractLoadBalance {
public static final String NAME = "random";
private final Random random = new Random();
@Override
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
int length = invokers.size();
int totalWeight = 0;
boolean sameWeight = true;
// 下面这个循环有两个作用,第一是计算总权重 totalWeight,
// 第二是检测每个服务提供者的权重是否相同,若不相同,则将 sameWeight 置为 false
for (int i = 0; i < length; i++) {
int weight = getWeight(invokers.get(i), invocation);
// 累加权重
totalWeight += weight;
// 检测当前服务提供者的权重与上一个服务提供者的权重是否相同,
// 不相同的话,则将 sameWeight 置为 false。
if (sameWeight && i > 0
&& weight != getWeight(invokers.get(i - 1), invocation)) {
sameWeight = false;
}
}
// 下面的 if 分支主要用于获取随机数,并计算随机数落在哪个区间上
if (totalWeight > 0 && !sameWeight) {
// 随机获取一个 [0, totalWeight) 之间的数字
int offset = random.nextInt(totalWeight);
// 循环让 offset 数减去服务提供者权重值,当 offset 小于0时,返回相应的 Invoker。
// 还是用上面的例子进行说明,servers = [A, B, C],weights = [5, 3, 2],offset = 7。
// 第一次循环,offset - 5 = 2 > 0,说明 offset 肯定不会落在服务器 A 对应的区间上。
// 第二次循环,offset - 3 = -1 < 0,表明 offset 落在服务器 B 对应的区间上
for (int i = 0; i < length; i++) {
// 让随机值 offset 减去权重值
offset -= getWeight(invokers.get(i), invocation);
if (offset < 0) {
// 返回相应的 Invoker
return invokers.get(i);
}
}
}
// 如果所有服务提供者权重值相同,此时直接随机返回一个即可
return invokers.get(random.nextInt(length));
}
}
RandomLoadBalance 的算法思想比较简单,在经过多次请求后,能够将调用请求按照权重值进行“均匀”分配。当然 RandomLoadBalance 也存在一定的缺点,当调用次数比较少时,Random 产生的随机数可能会比较集中,此时多数请求会落到同一台服务器上。这个缺点并不是很严重,多数情况下可以忽略。RandomLoadBalance 是一个简单,高效的负载均衡实现,因此 Dubbo 选择它作为缺省实现。
关于 RandomLoadBalance 就先到这了,接下来分析 LeastActiveLoadBalance。
2.2 LeastActiveLoadBalance
LeastActiveLoadBalance 翻译过来是最小活跃数负载均衡,所谓的最小活跃数可理解为最少连接数。即服务提供者目前正在处理的请求数(一个请求对应一条连接)最少,表明该服务提供者效率高,单位时间内可处理更多的请求。此时应优先将请求分配给该服务提供者。在具体实现中,每个服务提供者对应一个活跃数 active。初始情况下,所有服务提供者活跃数均为0。每收到一个请求,活跃数加1,完成请求后则将活跃数减1。在服务运行一段时间后,性能好的服务提供者处理请求的速度更快,因此活跃数下降的也越快。此时这样的服务提供者能够优先获取到新的服务请求,这就是最小活跃数负载均衡算法的基本思想。除了最小活跃数,LeastActiveLoadBalance 在实现上还引入了权重值。所以准确的来说,LeastActiveLoadBalance 是基于加权最小活跃数算法实现的。举个例子说明一下,在一个服务提供者集群中,有两个性能优异的服务提供者。某一时刻它们的活跃数相同,此时 Dubbo 会根据它们的权重去分配请求,权重越大,获取到新请求的可能性就越大。如果两个服务提供者权重相同,此时随机选择一个即可。关于 LeastActiveLoadBalance 的背景知识就先介绍到这里,下面开始分析源码。
public class LeastActiveLoadBalance extends AbstractLoadBalance {
public static final String NAME = "leastactive";
private final Random random = new Random();
@Override
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
int length = invokers.size();
// 最小的活跃数
int leastActive = -1;
// 具有相同“最小活跃数”的服务者提供者(以下用 Invoker 代称)数量
int leastCount = 0;
// leastIndexs 用于记录具有相同“最小活跃数”的 Invoker 在 invokers 列表中的下标信息
int[] leastIndexs = new int[length];
int totalWeight = 0;
// 第一个最小活跃数的 Invoker 权重值,用于与其他具有相同最小活跃数的 Invoker 的权重进行对比,
// 以检测是否所有具有相同最小活跃数的 Invoker 的权重均相等
int firstWeight = 0;
boolean sameWeight = true;
// 遍历 invokers 列表
for (int i = 0; i < length; i++) {
Invoker<T> invoker = invokers.get(i);
// 获取 Invoker 对应的活跃数
int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive();
// 获取权重 - ⭐️
int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
// 发现更小的活跃数,重新开始
if (leastActive == -1 || active < leastActive) {
// 使用当前活跃数 active 更新最小活跃数 leastActive
leastActive = active;
// 更新 leastCount 为 1
leastCount = 1;
// 记录当前下标值到 leastIndexs 中
leastIndexs[0] = i;
totalWeight = weight;
firstWeight = weight;
sameWeight = true;
// 当前 Invoker 的活跃数 active 与最小活跃数 leastActive 相同
} else if (active == leastActive) {
// 在 leastIndexs 中记录下当前 Invoker 在 invokers 集合中的下标
leastIndexs[leastCount++] = i;
// 累加权重
totalWeight += weight;
// 检测当前 Invoker 的权重与 firstWeight 是否相等,
// 不相等则将 sameWeight 置为 false
if (sameWeight && i > 0
&& weight != firstWeight) {
sameWeight = false;
}
}
}
// 当只有一个 Invoker 具有最小活跃数,此时直接返回该 Invoker 即可
if (leastCount == 1) {
return invokers.get(leastIndexs[0]);
}
// 有多个 Invoker 具有相同的最小活跃数,但他们的权重不同
if (!sameWeight && totalWeight > 0) {
// 随机获取一个 [0, totalWeight) 之间的数字
int offsetWeight = random.nextInt(totalWeight);
// 循环让随机数减去具有最小活跃数的 Invoker 的权重值,
// 当 offset 小于等于0时,返回相应的 Invoker
for (int i = 0; i < leastCount; i++) {
int leastIndex = leastIndexs[i];
// 获取权重值,并让随机数减去权重值 - ⭐️
offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
if (offsetWeight <= 0)
return invokers.get(leastIndex);
}
}
// 如果权重相同或权重为0时,随机返回一个 Invoker
return invokers.get(leastIndexs[random.nextInt(leastCount)]);
}
}
如上,为了帮助大家理解代码,我在上面的代码中写了大量的注释。下面简单总结一下以上代码所做的事情,如下:
- 遍历 invokers 列表,寻找活跃数最小的 Invoker
- 如果有多个 Invoker 具有相同的最小活跃数,此时记录下这些 Invoker 在 invokers 集合中的下标,以及累加它们的权重,比较它们之间的权重值是否相等
- 如果只有一个 Invoker 具有最小的活跃数,此时直接返回该 Invoker 即可
- 如果有多个 Invoker 具有最小活跃数,且它们的权重不相等,此时处理方式和 RandomLoadBalance 一致
- 如果有多个 Invoker 具有最小活跃数,但它们的权重相等,此时随机返回一个即可
以上就是 LeastActiveLoadBalance 大致的实现逻辑,大家在阅读的源码的过程中要注意区分活跃数与权重这两个概念,不要混为一谈。
以上分析是基于 Dubbo 2.6.4 版本进行了,由于近期 Dubbo 2.6.5 发布了,对负载均衡部分的代码进行了一些更新。这其中就包含了本节分析的 LeastActiveLoadBalance,所以下面简单说明一下 Dubbo 2.6.5 对 LeastActiveLoadBalance 进行了怎样的修改。回到上面的源码中,我在上面的代码中标注了两个黄色的五角星⭐️。两处标记对应的代码分别如下:
int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
问题出在服务预热阶段,第一行代码直接从 url 中去权重值,未被降权过。第二行代码获取到的是经过降权后的权重。第一行代码获取到的权重值最终会被累加到权重总和 totalWeight 中,这个时候会导致一个问题。offsetWeight 是一个在 [0, totalWeight) 范围内的随机数,而它所减去的是经过降权的权重。很有可能在经过 leastCount 次运算后,offsetWeight 仍然是大于0的,导致无法选中 Invoker。这个问题对应的 issue 为 #904,在 pull request #2172 中被修复。具体的修复逻辑是将标注一处的代码修改为:
// afterWarmup 等价于上面的 weight 变量,这样命名是为了强调该变量经过 warmup 降权处理了
int afterWarmup = getWeight(invoker, invocation);
另外,2.6.4 版本中的 LeastActiveLoadBalance 还要一个缺陷,即当一组 Invoker 具有相同的最小活跃数,且其中一个 Invoker 的权重值为1,此时这个 Invoker 无法被选中。缺陷代码如下:
int offsetWeight = random.nextInt(totalWeight);
for (int i = 0; i < leastCount; i++) {
int leastIndex = leastIndexs[i];
offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
if (offsetWeight <= 0) // ❌
return invokers.get(leastIndex);
}
问题就出在了offsetWeight <= 0
上,举例说明,假设有一组 Invoker 的权重为 5、2、1,offsetWeight 最大值为 7。假设 offsetWeight = 7,你会发现,当 for 循环进行第二次遍历后 offsetWeight = 7 – 5 – 2 = 0,提前返回了。此时,权重为1的 Invoker 就没有机会被选中。这个修改起来也不难,可以将 offsetWeight < 0
,不过 Dubbo 的是将offsetWeight + 1
,也就是:
int offsetWeight = random.nextInt(totalWeight) + 1;
两种改动都行,不过我认为觉得第一种方式更好一点,可与 RandomLoadBalance 逻辑保持一致。这里+1有点突兀,大家读到这里要特地思考一下为什么要+1。
以上就是 Dubob 2.6.5 对 LeastActiveLoadBalance 的更新,不是很难理解,就不多说了。接下来分析基于一致性 hash 思想的 ConsistentHashLoadBalance。
最后
以上就是灵巧小蘑菇为你收集整理的Dubbo 源码分析 – 集群容错之 LoadBalance的全部内容,希望文章能够帮你解决Dubbo 源码分析 – 集群容错之 LoadBalance所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复