概述
java类文件是以 .java为后缀的文件,经过javac命令编译后,编译成class文件,class文件中都是二进制格式的数据,所以想要看编译后的内容是什么,可以采用jdk自带的javap命令查看。
JVM中有个组成部分为类加载器(ClassLoader),负责java文件编译后class文件的加载,加载到哪呢,加载到内存。那下面来说一下JVM的内存管理。
java通过类加载器来加载class文件,加载到内存后,会把类、方法、常变量放到堆内存中。因为java是自动进行垃圾回收的,所以放入堆内存中的东西,哪些该回收,哪些不该回收?这都需要jvm去额外的线程去进行判断。但如果对于一个大型的J2EE系统来说,当创建的对象及方法变量比较多时,即堆内存中的对象比较多,如果一个一个对象去进行循环判断是否该回收时,这样的回收机制未免太耗时了,系统的性能一定会下降,jvm为了提高jvm执行效率,采用了堆内存分区管理的机制。
JVM的内存分栈内存、堆内存、本地方法栈和方法区四部分。
1)堆
所有通过new创建的对象的内存都在堆中分配,其大小可以通过-Xmx和-Xms来控制。堆被划分为新生代和旧生代,新生代又被进一步划分为Eden和Survivor区,最后Survivor由FromSpace和ToSpace组成,结构图如下所示:
JVM把堆内存分三大块:Young Generation Space 新生区(也称新生代)、Tenure generation space养老区(也称旧生代)、Permanent Space 永久存储区。分区是为了进行模块化管理,管理不同的对象及变量以提高JVM的执行效率。
对于Young Generation Space ,它主要用来存储新创建的对象,内存大小会比较小,垃圾回收会比较频繁。对此区又分三个区域:一个Eden Space和两个Survivor Space。有一个前辈对这三个区域描述的相当透彻:
- 当对象在堆创建时,将进入年轻代的Eden Space。
- 垃圾回收器进行垃圾回收时,扫描Eden Space和A Suvivor Space,如果对象仍然存活,则复制到B Suvivor Space,如果B Suvivor Space已经满,则复制 Old Gen
- 扫描A Suvivor Space时,如果对象已经经过了几次的扫描仍然存活,JVM认为其为一个Old对象,则将其移到Old Gen。
- 扫描完毕后,JVM将Eden Space和A Suvivor Space清空,然后交换A和B的角色(即下次垃圾回收时会扫描Eden Space和BSuvivor Space。
新生代。新建的对象都是用新生代分配内存,Eden空间不足的时候,会把存活的对象转移到Survivor中,新生代大小可以由-Xmn来控制,也可以用-XX:SurvivorRatio来控制Eden和Survivor的比例旧生代。用于存放新生代中经过多次垃圾回收仍然存活的对象
2)栈
每个线程执行每个方法的时候都会在栈中申请一个栈帧,每个栈帧包括局部变量区和操作数栈,用于存放此次方法调用过程中的临时变量、参数和中间结果
3)本地方法栈
用于支持native方法的执行,存储了每个native方法调用的状态
4)方法区
存放了要加载的类信息、静态变量、final类型的常量、属性和方法信息。JVM用持久代(Permanet Generation)来存放方法区,可通过-XX:PermSize和-XX:MaxPermSize来指定最小值和最大值。
内存回收
介绍完了JVM内存组成结构,下面我们再来看一下JVM垃圾回收机制。JVM分别对新生代和旧生代采用不同的垃圾回收机制
新生代的GC:
新生代通常存活时间较短,因此基于Copying算法来进行回收,所谓Copying算法就是扫描出存活的对象,并复制到一块新的完全未使用的空间中,对应于新生代,就是在Eden和FromSpace或ToSpace之间copy。新生代采用空闲指针的方式来控制GC触发,指针保持最后一个分配的对象在新生代区间的位置,当有新的对象要分配内存时,用于检查空间是否足够,不够就触发GC。当连续分配对象时,对象会逐渐从eden到 survivor,最后到旧生代,
用javavisualVM来查看,能明显观察到新生代满了后,会把对象转移到旧生代,然后清空继续装载,当旧生代也满了后,就会报outofmemory的异常,如下图所示:
在执行机制上JVM提供了串行GC(SerialGC)、并行回收GC(ParallelScavenge)和并行GC(ParNew)
1)串行GC
在整个扫描和复制过程采用单线程的方式来进行,适用于单CPU、新生代空间较小及对暂停时间要求不是非常高的应用上,是client级别默认的GC方式,可以通过-XX:+UseSerialGC来强制指定
2)并行回收GC
在整个扫描和复制过程采用多线程的方式来进行,适用于多CPU、对暂停时间要求较短的应用上,是server级别默认采用的GC方式,可用-XX:+UseParallelGC来强制指定,用-XX:ParallelGCThreads=4来指定线程数
3)并行GC
与旧生代的并发GC配合使用
旧生代的GC:
旧生代与新生代不同,对象存活的时间比较长,比较稳定,因此采用标记(Mark)算法来进行回收,所谓标记就是扫描出存活的对象,然后再进行回收未被标记的对象,回收后对用空出的空间要么进行合并,要么标记出来便于下次进行分配,总之就是要减少内存碎片带来的效率损耗。在执行机制上JVM提供了串行 GC(SerialMSC)、并行GC(parallelMSC)和并发GC(CMS),具体算法细节还有待进一步深入研究。
以上各种GC机制是需要组合使用的,指定方式由下表所示:
gc()有何用?
调用 gc 方法暗示着 Java 虚拟机做了一些努力来回收未用对象,以便能够快速地重用这些对象当前占用的内存。当控制权从方法调用中返回时,虚拟机已经尽最大努力从所有丢弃的对象中回收了空间。
调用 System.gc() 等效于调用Runtime.getRuntime().gc()
finalize()有何用?
gc 只能清除在堆上分配的内存(纯java语言的所有对象都在堆上使用new分配内存),而不能清除栈上分配的内存(当使用JNI技术时,可能会在栈上分配内存,例如java调用c程序,而该c程序使用malloc分配内存时)。因此,如果某些对象被分配了栈上的内存区域,那gc就管不着了,对栈上的对象进行内存回收就要靠finalize()。
举个例子来说,当java 调用非java方法时(这种方法可能是c或是c++的),在非java代码内部也许调用了c的malloc()函数来分配内存,而且除非调用那个了 free() 否则不会释放内存(因为free()是c的函数),这个时候要进行释放内存的工作,gc是不起作用的,因而需要在finalize()内部的一个固有方法调用free()。
finalize的工作原理应该是这样的:一旦垃圾收集器准备好释放对象占用的存储空间,它首先调用finalize(),而且只有在下一次垃圾收集过程中,才会真正回收对象的内存.所以如果使用finalize(),就可以在垃圾收集期间进行一些重要的清除或清扫工作.
finalize()在什么时候被调用?
有三种情况
1.所有对象被Garbage Collection时自动调用,比如运行System.gc()后.
2.程序退出时为每个对象调用一次finalize方法。
3.显式的调用finalize方法
除此以外,正常情况下,当某个对象被系统收集为无用信息的时候,finalize()将被自动调用。但是jvm不保证finalize()一定被调用,也就是说,finalize()的调用是不确定的,这也就是为什么sun不提倡使用finalize()的原因. 简单来讲,finalize()是在对象被GC回收前会调用的方法,而System.gc()建议而非强制GC开始回收工作,具体执行要看GC的执行策略。
调用了 System.gc() 之后,java 在内存回收过程中就会调用那些要被回收的对象的 finalize() 方法。
最后
以上就是无辜大侠为你收集整理的java内存管理和回收机制的全部内容,希望文章能够帮你解决java内存管理和回收机制所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复