我是靠谱客的博主 漂亮夏天,这篇文章主要介绍Eigen 学习文档: 矩阵和向量运算,现在分享给大家,希望可以做个参考。

Eigen 学习文档: 矩阵和向量运算

本页旨在提供有关如何使用Eigen在矩阵、向量和标量之间执行算术的概述和一些详细信息。

介绍

Eigen通过重载常见的 C++ 算术运算符(如 +、-、*)或通过特殊方法(如 dot()、cross() 等)提供矩阵/矢量算术运算。对于Matrix类(矩阵和矢量),运算符仅重载以支持线性代数运算。例如,matrix1 * matrix2表示矩阵-矩阵乘积,vector + scalar就是不允许的。

加减运算

加减运算左侧和右侧必须具有相同的行数和列数。它们还必须具有相同的数据类型,因为Eigen不进行自动类型转换。这里的操作是:

  • binary operator + as in a+b
  • binary operator - as in a-b
  • unary operator - as in -a
  • compound operator += as in a+=b
  • compound operator -= as in a-=b
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include <iostream> #include <Eigen/Dense> int main() { Eigen::Matrix2d a; a << 1, 2, 3, 4; Eigen::MatrixXd b(2,2); b << 2, 3, 1, 4; std::cout << "a + b =n" << a + b << std::endl; std::cout << "a - b =n" << a - b << std::endl; std::cout << "Doing a += b;" << std::endl; a += b; std::cout << "Now a =n" << a << std::endl; Eigen::Vector3d v(1,2,3); Eigen::Vector3d w(1,0,0); std::cout << "-v + w - v =n" << -v + w - v << std::endl; }

输出:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
a + b = 3 5 4 8 a - b = -1 -1 2 0 Doing a += b; Now a = 3 5 4 8 -v + w - v = -1 -4 -6

乘除运算

标量的乘法和除法也非常简单。这里的操作是:

  • binary operator * as in matrix*scalar
  • binary operator * as in scalar*matrix
  • binary operator / as in matrix/scalar
  • compound operator *= as in matrix*=scalar
  • compound operator /= as in matrix/=scalar
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
include <iostream> #include <Eigen/Dense> int main() { Eigen::Matrix2d a; a << 1, 2, 3, 4; Eigen::Vector3d v(1,2,3); std::cout << "a * 2.5 =n" << a * 2.5 << std::endl; std::cout << "0.1 * v =n" << 0.1 * v << std::endl; std::cout << "Doing v *= 2;" << std::endl; v *= 2; std::cout << "Now v =n" << v << std::endl; }

输出:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
a * 2.5 = 2.5 5 7.5 10 0.1 * v = 0.1 0.2 0.3 Doing v *= 2; Now v = 2 4 6

关于表达式模板的说明

这是我们在此页面上解释的高级主题,但现在仅提及它很有用。在Eigen中,诸如算术运算符operator+本身不执行任何计算,它们只是返回一个描述要执行的计算的“表达式对象”。实际计算发生在稍后,当整个表达式被评估时,通常在operator=. 虽然这听起来很繁重,但任何现代优化编译器都能够优化掉这种抽象,结果是完美优化的代码。例如,当您这样做时:

复制代码
1
2
3
4
VectorXf a(50), b(50), c(50), d(50); ... a = 3*b + 4*c + 5*d;

Eigen将其编译为一个 for 循环,因此数组只被遍历一次。简化(例如忽略 SIMD 优化),这个循环看起来像这样:

复制代码
1
2
3
for(int i = 0; i < 50; ++i) a[i] = 3*b[i] + 4*c[i] + 5*d[i];

因此,不用害怕在 Eigen 中使用相对较大的算术表达式:它只会为Eigen提供更多优化机会。

转置和共轭

转置一个吨, 共轭一个¯, 和伴随(即共轭转置)一个*矩阵或向量的一个分别由成员函数transpose()、conjugate()和adjoint()获得。

例子: 输出:

复制代码
1
2
3
4
5
6
MatrixXcf a = MatrixXcf::Random(2,2); cout << "Here is the matrix an" << a << endl; cout << "Here is the matrix a^Tn" << a.transpose() << endl; cout << "Here is the conjugate of an" << a.conjugate() << endl; cout << "Here is the matrix a^*n" << a.adjoint() << endl;

输出:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
Here is the matrix a (-0.211,0.68) (-0.605,0.823) (0.597,0.566) (0.536,-0.33) Here is the matrix a^T (-0.211,0.68) (0.597,0.566) (-0.605,0.823) (0.536,-0.33) Here is the conjugate of a (-0.211,-0.68) (-0.605,-0.823) (0.597,-0.566) (0.536,0.33) Here is the matrix a^* (-0.211,-0.68) (0.597,-0.566) (-0.605,-0.823) (0.536,0.33)

对于实矩阵,conjugate()是不进行任何操作的,因此adjoint()等价于transpose()。

至于基本的算术运算符,transpose()只需adjoint()返回一个代理对象而不做实际的转置。如果这样做b = a.transpose(),则在将结果写入 的同时评估转置b。但是,这里有一个并发症。如果这样做a = a.transpose(),则Eigen在转置评估完成之前开始将结果写入。因此,正如所期望的那样,该指令a = a.transpose()不会用它的转置代替:a

复制代码
1
2
3
4
5
6
Matrix2i a; a << 1, 2, 3, 4; cout << "Here is the matrix a:n" << a << endl; a = a.transpose(); // !!! do NOT do this !!! cout << "and the result of the aliasing effect:n" << a << endl;

输出:

复制代码
1
2
3
4
5
6
7
Here is the matrix a: 1 2 3 4 and the result of the aliasing effect: 1 2 2 4

这就是所谓的别名问题。在“调试模式”下,即当断言没有被禁用时,会自动检测到这种常见的缺陷。

对于就地转置,例如 in a = a.transpose(),只需使用transposeInPlace()函数:

复制代码
1
2
3
4
5
MatrixXf a(2,3); a << 1, 2, 3, 4, 5, 6; cout << "Here is the initial matrix a:n" << a << endl; a.transposeInPlace(); cout << "and after being transposed:n" << a << endl;

输出:

复制代码
1
2
3
4
5
6
7
8
Here is the initial matrix a: 1 2 3 4 5 6 and after being transposed: 1 4 2 5 3 6

还有用于复杂矩阵的adjointInPlace()函数。

矩阵-矩阵和矩阵-向量乘法

矩阵-矩阵乘法再次用 完成operator*。由于向量是矩阵的特例,它们也被隐式处理,所以矩阵-向量积实际上只是矩阵-矩阵积的一个特例,向量-向量外积也是如此。因此,所有这些情况都由两个操作员处理:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <iostream> #include <Eigen/Dense> int main() { Eigen::Matrix2d mat; mat << 1, 2, 3, 4; Eigen::Vector2d u(-1,1), v(2,0); std::cout << "Here is mat*mat:n" << mat*mat << std::endl; std::cout << "Here is mat*u:n" << mat*u << std::endl; std::cout << "Here is u^T*mat:n" << u.transpose()*mat << std::endl; std::cout << "Here is u^T*v:n" << u.transpose()*v << std::endl; std::cout << "Here is u*v^T:n" << u*v.transpose() << std::endl; std::cout << "Let's multiply mat by itself" << std::endl; mat = mat*mat; std::cout << "Now mat is mat:n" << mat << std::endl; }

输出:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Here is mat*mat: 7 10 15 22 Here is mat*u: 1 1 Here is u^T*mat: 2 2 Here is u^T*v: -2 Here is u*v^T: -2 -0 2 0 Let's multiply mat by itself Now mat is mat: 7 10 15 22

注意:如果你阅读了上面关于表达式模板的段落并担心这样做m=mm可能会导致混叠问题,

请暂时放心:Eigen将矩阵乘法视为一种特殊情况,并在此处引入一个临时的,因此它将编译m=mm为:

tmp = m*m; m = tmp;

如果您知道您的矩阵乘积可以安全地评估为目标矩阵而不会出现混叠问题,那么您可以使用noalias()函数来避免临时问题,例如:

c.noalias() += a * b;

注意:对于担心性能的 BLAS 用户,诸如此类的表达式c.noalias() -= 2 * a.adjoint() * b;已完全优化并触发单个类似 gemm 的函数调用。

点积和叉积

对于点积和叉积,您需要dot()和cross()方法。当然,点积也可以作为 1x1 矩阵得到,如 u.adjoint()*v。

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
#include <iostream> #include <Eigen/Dense> int main() { Eigen::Vector3d v(1,2,3); Eigen::Vector3d w(0,1,2); std::cout << "Dot product: " << v.dot(w) << std::endl; double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar std::cout << "Dot product via a matrix product: " << dp << std::endl; std::cout << "Cross product:n" << v.cross(w) << std::endl;

输出:

复制代码
1
2
3
4
5
6
7
Dot product: 8 Dot product via a matrix product: 8 Cross product: 1 -2 1

叉积仅适用于大小为 3 的向量。点积适用于任何大小的向量。使用复数时,Eigen的点积在第一个变量中是共轭线性的,在第二个变量中是线性的。

基本算术归约操作

Eigen还提供了一些归约操作,以将给定的矩阵或向量归约为单个值,例如总和(由sum()计算)、乘积(prod())或最大值(maxCoeff())和最小值(minCoeff() ) 的所有系数。

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#include <iostream> #include <Eigen/Dense> using namespace std; int main() { Eigen::Matrix2d mat; mat << 1, 2, 3, 4; cout << "Here is mat.sum(): " << mat.sum() << endl; cout << "Here is mat.prod(): " << mat.prod() << endl; cout << "Here is mat.mean(): " << mat.mean() << endl; cout << "Here is mat.minCoeff(): " << mat.minCoeff() << endl; cout << "Here is mat.maxCoeff(): " << mat.maxCoeff() << endl; cout << "Here is mat.trace(): " << mat.trace() << endl; }

输出:

复制代码
1
2
3
4
5
6
7
Here is mat.sum(): 10 Here is mat.prod(): 24 Here is mat.mean(): 2.5 Here is mat.minCoeff(): 1 Here is mat.maxCoeff(): 4 Here is mat.trace(): 5

由函数 trace() 返回的矩阵的迹是对角线系数的总和,也可以使用 有效地计算a.diagonal().sum(),我们将在后面看到。

还存在minCoeff和maxCoeff函数的变体,它们通过参数返回相应系数的坐标:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
Matrix3f m = Matrix3f::Random(); std::ptrdiff_t i, j; float minOfM = m.minCoeff(&i,&j); cout << "Here is the matrix m:n" << m << endl; cout << "Its minimum coefficient (" << minOfM << ") is at position (" << i << "," << j << ")nn"; RowVector4i v = RowVector4i::Random(); int maxOfV = v.maxCoeff(&i); cout << "Here is the vector v: " << v << endl; cout << "Its maximum coefficient (" << maxOfV << ") is at position " << i << endl;

输出:

复制代码
1
2
3
4
5
6
7
8
9
Here is the matrix m: 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 Its minimum coefficient (-0.605) is at position (2,1) Here is the vector v: 1 0 3 -3 Its maximum coefficient (3) is at position 2

操作的有效性

Eigen检查您执行的操作的有效性。如果可能,它会在编译时检查它们,从而产生编译错误。这些错误消息可能又长又丑,但Eigen将重要消息写在 UPPERCASE_LETTERS_SO_IT_STANDS_OUT 中。例如:

复制代码
1
2
3
4
Matrix3f m; Vector4f v; v = m*v; // Compile-time error: YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES

当然,在很多情况下,例如在检查动态大小时,无法在编译时进行检查。Eigen然后使用运行时断言。这意味着如果程序在“调试模式”下运行,则在执行非法操作时将中止并显示错误消息,如果关闭断言,它可能会崩溃。

复制代码
1
2
3
4
MatrixXf m(3,3); VectorXf v(4); v = m * v; // Run-time assertion failure here: "invalid matrix product"

最后

以上就是漂亮夏天最近收集整理的关于Eigen 学习文档: 矩阵和向量运算的全部内容,更多相关Eigen内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(80)

评论列表共有 0 条评论

立即
投稿
返回
顶部