我是靠谱客的博主 含糊睫毛膏,这篇文章主要介绍Eigen库函数实现欧拉角与旋转矩阵转换,现在分享给大家,希望可以做个参考。

一、简介

Eigen库是一个开源的C++线性代数库,它提供了快速的有关矩阵的线性代数运算,还包括解方程等功能。Eigen是一个用纯头文件搭建起来的库,这意味这你只要能找到它的头文件,就能使用它。Eigen头文件的默认位置是“/usr/include/eigen3”.

由于Eigen库相较于OpenCV中的Mat等库而言更加高效,许多上层的软件库也使用Eigen进行矩阵运算,比如SLAM中常用的g2o,Sophus等。此外Eigen库还被被用于Caffe,Tensorflow等许多深度学习相关的框架中。

Eigen申明变量时有点类似于c语言,类型在变量的前面,而opencv中Mat申明变量时是c++中直接制定获取是构造函数中构造类型。

二、Eigen的学习

1. 向量矩阵基本操作

  • 向量

Eigen::Vector3d v3d;  //向量
Eigen::VectorXd v(6);  //需要指定大小(6)
v3d << 1,2,3;
cout << "向量 v3d = "<< endl << v3d << endl << endl;
v << 1,2,3,4,5,6;
cout << "向量 v = "<< endl << v << endl << endl;

输出:

向量 v3d = 
1
2
3

向量 v = 
1
2
3
4
5
6
 

  • 矩阵基本操作

Eigen::Matrix<float,2,3> m_f23;  //行、列
Eigen::MatrixXd m_d24(2,4);
Eigen::Matrix3d m_d33;
m_f23 << 1,2,3,
         4,5,6;
cout << "矩阵 m_f23 = "<< endl << m_f23 << endl << endl;
m_d24 << 1,2,3,4,
         5,6,7,8;
cout << "矩阵 m_d24 = "<< endl << m_d24 << endl << endl;
m_d33 << 1,2,3,
         4,5,6,
         7,8,9;
cout << "矩阵 m_d33 = "<< endl << m_d33 << endl << endl;

输出:

矩阵 m_f23 = 
1 2 3
4 5 6

矩阵 m_d24 = 
1 2 3 4
5 6 7 8

矩阵 m_d33 = 
1 2 3
4 5 6
7 8 9

  • 矩阵利用函数进行赋值

Eigen::Matrix4d m_d44 = Eigen::Matrix4d::Zero();
cout << "Zero 矩阵 m_d44 = " << endl << m_d44 << endl << endl;
m_d44 = Eigen::Matrix4d::Random();
cout << "矩阵 m_d44 = "<< endl << m_d44 << endl << endl;
Eigen::MatrixXd m_dnn(5,5);
m_dnn = Eigen::MatrixXd::Random(5, 5);
cout << "Random 矩阵 m_dnn = "<< endl << m_dnn << endl << endl;

输出:

Zero 矩阵 m_d44 = 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

矩阵 m_d44 = 
  0.680375   0.823295  -0.444451  -0.270431
 -0.211234  -0.604897    0.10794  0.0268018
  0.566198  -0.329554 -0.0452059   0.904459
   0.59688   0.536459   0.257742    0.83239

Random 矩阵 m_dnn = 
 0.271423 -0.514226 -0.740419  0.678224 -0.012834
 0.434594 -0.725537 -0.782382   0.22528   0.94555
-0.716795  0.608354  0.997849 -0.407937 -0.414966
 0.213938 -0.686642 -0.563486  0.275105  0.542715
 

  • 获取指定元素的值

for(int i = 0 ;i < 5; i++){
    for(int j = 0; j < 5; j++){
        cout << m_dnn(i,j) << "," ;
    }
    cout << endl << endl;
}

  • 获取矩阵的子矩阵(block)

Eigen::MatrixXf m_block(5,5);
m_block <<1,2,3,4,5,
    6,7,8,9,10,
    11,12,13,14,15,
    16,17,18,19,20,
    21,22,23,24,25;
Eigen::MatrixXf m_sun1 = m_block.block<2,2>(1,1);//从1行1列开始,获取2*2的子矩阵矩阵
cout << "block 矩阵 m_block.block<2,2>(1,1) = "<< endl << m_sun1 << endl << endl;
Eigen::MatrixXf m_sun2 = m_block.block(1,1,2,2);//同上
cout << "block 矩阵 m_block.block(1,1,2,2) = "<< endl << m_sun2 << endl << endl;

cout << "矩阵 m_block m_block.row(0) = "<< endl << m_block.row(0) << endl << endl;
cout << "矩阵 m_block m_block.col(0) = "<< endl << m_block.col(0) << endl << endl;

输出:

block 矩阵 m_block.block<2,2>(1,1) = 
 7  8
12 13

block 矩阵 m_block.block(1,1,2,2) = 
 7  8
12 13

矩阵 m_block m_block.row(0) = 
1 2 3 4 5

矩阵 m_block m_block.col(0) = 
 1
 6
11
16
21

  • 矩阵组合操作

Eigen::Matrix3f R;
R << 1,2,3,4,5,6,7,8,9;
Eigen::Matrix<float,3,1> T;
T << 11,11,11;
Eigen::Matrix<float,1,4> B;
B << 22,22,22,22;
Eigen::Matrix<float,4,4> H;
H << R,T,B;
cout << "其次矩阵 H = "<< endl << H << endl << endl;
Eigen::Matrix<float,2,4> newH;
newH << H.block(0,0,1,4),B;
cout << "其次矩阵 newH = "<< endl << newH << endl << endl;

输出:

其次矩阵 H = 
 1  2  3 11
 4  5  6 11
 7  8  9 11
22 22 22 22

其次矩阵 newH = 
 1  2  3 11
22 22 22 22
 

2.矩阵进行运算

  • 矩阵相乘

Eigen::Matrix3d m1,m2;
m1 << 1,0,0,
        0,1,0,
        0,0,2;
m2 << 1,2,3,
        4,5,6,
        7,8,9;
cout << "m1 * m2 = "<< endl << m1 * m2 << endl << endl;

  • 矩阵转置

cout << "转置  m2.transpose() = "<< endl << m2.transpose() << endl << endl;

  • 矩阵求和

cout << "求和  m2.sum() = "<< endl << m2.sum() << endl << endl;

  • 矩阵求逆

cout << "求逆  m2.inverse() = "<< endl << m2.inverse() << endl << endl;

  • 矩阵迹

cout << "迹  m2.trace() = "<< endl << m2.trace() << endl << endl;

  • 矩阵数乘

cout << "数乘  10*m2 = "<< endl << 10 * m2 << endl << endl;

  • 矩阵行列式

cout << "行列式  m2.determinant() = "<< endl << m2.determinant() << endl << endl;

m1 * m2 = 
 1  2  3
 4  5  6
14 16 18

转置  m2.transpose() = 
1 4 7
2 5 8
3 6 9

求和  m2.sum() = 
45

求逆  m2.inverse() = 
-inf  inf -inf
 inf -inf  inf
-inf  inf -inf

迹  m2.trace() = 
15

数乘  10*m2 = 
10 20 30
40 50 60
70 80 90

行列式  m2.determinant() = 
0

3、代码

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include <iostream> #include <Eigen/Core> #include <Eigen/Dense> using namespace std; int main() { /*+++++++++++++++++++++++++++ 一、向量矩阵基本操作 ++++++++++++++++**/ //1、向量 Eigen::Vector3d v3d; //向量 Eigen::VectorXd v(6); //需要指定大小(6) v3d << 1,2,3; cout << "向量 v3d = "<< endl << v3d << endl << endl; v << 1,2,3,4,5,6; cout << "向量 v = "<< endl << v << endl << endl; //2、矩阵基本操作 Eigen::Matrix<float,2,3> m_f23; //行、列 Eigen::MatrixXd m_d24(2,4); Eigen::Matrix3d m_d33; m_f23 << 1,2,3, 4,5,6; cout << "矩阵 m_f23 = "<< endl << m_f23 << endl << endl; m_d24 << 1,2,3,4, 5,6,7,8; cout << "矩阵 m_d24 = "<< endl << m_d24 << endl << endl; m_d33 << 1,2,3, 4,5,6, 7,8,9; cout << "矩阵 m_d33 = "<< endl << m_d33 << endl << endl; //3、矩阵利用函数进行赋值 Eigen::Matrix4d m_d44 = Eigen::Matrix4d::Zero(); cout << "Zero 矩阵 m_d44 = " << endl << m_d44 << endl << endl; m_d44 = Eigen::Matrix4d::Random(); cout << "矩阵 m_d44 = "<< endl << m_d44 << endl << endl; Eigen::MatrixXd m_dnn(5,5); m_dnn = Eigen::MatrixXd::Random(5, 5); cout << "Random 矩阵 m_dnn = "<< endl << m_dnn << endl << endl; //4、获取指定元素的值 for(int i = 0 ;i < 5; i++){ for(int j = 0; j < 5; j++){ cout << m_dnn(i,j) << "," ; } cout << endl << endl; } //5、获取矩阵的子矩阵(block) Eigen::MatrixXf m_block(5,5); m_block <<1,2,3,4,5, 6,7,8,9,10, 11,12,13,14,15, 16,17,18,19,20, 21,22,23,24,25; Eigen::MatrixXf m_sun1 = m_block.block<2,2>(1,1);//从1行1列开始,获取2*2的子矩阵矩阵 cout << "block 矩阵 m_block.block<2,2>(1,1) = "<< endl << m_sun1 << endl << endl; Eigen::MatrixXf m_sun2 = m_block.block(1,1,2,2);//同上 cout << "block 矩阵 m_block.block(1,1,2,2) = "<< endl << m_sun2 << endl << endl; cout << "矩阵 m_block m_block.row(0) = "<< endl << m_block.row(0) << endl << endl; cout << "矩阵 m_block m_block.col(0) = "<< endl << m_block.col(0) << endl << endl; //6、矩阵组合操作 Eigen::Matrix3f R; R << 1,2,3,4,5,6,7,8,9; Eigen::Matrix<float,3,1> T; T << 11,11,11; Eigen::Matrix<float,1,4> B; B << 22,22,22,22; Eigen::Matrix<float,4,4> H; H << R,T,B; cout << "其次矩阵 H = "<< endl << H << endl << endl; Eigen::Matrix<float,2,4> newH; newH << H.block(0,0,1,4),B; cout << "其次矩阵 newH = "<< endl << newH << endl << endl; /*------------------ end -----------------**/ /*+++++++++++++++++++++++++++ 二、矩阵进行运算 ++++++++++++++++**/ // 1、矩阵相乘 Eigen::Matrix3d m1,m2; m1 << 1,0,0, 0,1,0, 0,0,2; m2 << 1,2,3, 4,5,6, 7,8,9; cout << "m1 * m2 = "<< endl << m1 * m2 << endl << endl; //2、矩阵转置 cout << "转置 m2.transpose() = "<< endl << m2.transpose() << endl << endl; //3、矩阵求和 cout << "求和 m2.sum() = "<< endl << m2.sum() << endl << endl; //4、矩阵求逆 cout << "求逆 m2.inverse() = "<< endl << m2.inverse() << endl << endl; //5、矩阵迹 cout << "迹 m2.trace() = "<< endl << m2.trace() << endl << endl; //6、矩阵数乘 cout << "数乘 10*m2 = "<< endl << 10 * m2 << endl << endl; //7、矩阵行列式 cout << "行列式 m2.determinant() = "<< endl << m2.determinant() << endl << endl; return 0; }

三、矩阵之间的转换

1、欧拉角转旋转矩阵

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
//这里theta也是弧度制 static Eigen::Matrix3d eul2rotm(Eigen::Vector3d &theta,string m_sSeq) { Eigen::Matrix3d rotX; // 计算旋转矩阵的X分量 rotX << 1, 0, 0, 0, cos(theta[0]), -sin(theta[0]), 0, sin(theta[0]), cos(theta[0]); Eigen::Matrix3d rotY; // 计算旋转矩阵的Y分量 rotY << cos(theta[1]), 0, sin(theta[1]), 0, 1, 0, -sin(theta[1]), 0, cos(theta[1]); Eigen::Matrix3d rotZ; // 计算旋转矩阵的Z分量 rotZ << cos(theta[2]), -sin(theta[2]), 0, sin(theta[2]), cos(theta[2]), 0, 0, 0, 1; Eigen::Matrix3d R; if (m_sSeq == "zyx") { R = rotX * rotY * rotZ; } else if (m_sSeq == "yzx") { R = rotX * rotZ * rotY; } else if (m_sSeq == "zxy") { R = rotY * rotX * rotZ; } else if (m_sSeq == "xzy") { R = rotY * rotZ * rotX; } else if (m_sSeq == "yxz") { R = rotZ * rotX * rotY; } else if (m_sSeq == "xyz") { R = rotZ * rotY * rotX; } return R; }

2、旋转矩阵转欧拉角

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
static Eigen::Vector3d rotm2eul(Eigen::Matrix3d &R) { double sy = sqrt(R(0,0) * R(0,0) + R(1,0) * R(1,0)); bool singular = sy < 1e-6; double x, y, z; if (!singular) { x = atan2( R(2,1), R(2,2)); y = atan2(-R(2,0), sy); z = atan2( R(1,0), R(0,0)); } else { x = atan2(-R(1,2), R(1,1)); y = atan2(-R(2,0), sy); z = 0; } return {x, y, z}; }

最后

以上就是含糊睫毛膏最近收集整理的关于Eigen库函数实现欧拉角与旋转矩阵转换的全部内容,更多相关Eigen库函数实现欧拉角与旋转矩阵转换内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(64)

评论列表共有 0 条评论

立即
投稿
返回
顶部