我是靠谱客的博主 追寻雪碧,这篇文章主要介绍P1330 封锁阳光大学,现在分享给大家,希望可以做个参考。

题目描述

曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街。河蟹看到欢快的曹,感到不爽。河蟹决定封锁阳光大学,不让曹刷街。

阳光大学的校园是一张由 n个点构成的无向图,n个点之间由m条道路连接。每只河蟹可以对一个点进行封锁,当某个点被封锁后,与这个点相连的道路就被封锁了,曹就无法在这些道路上刷街了。非常悲剧的一点是,河蟹是一种不和谐的生物,当两只河蟹封锁了相邻的两个点时,他们会发生冲突。

询问:最少需要多少只河蟹,可以封锁所有道路并且不发生冲突。

输入格式
第一行两个正整数,表示节点数和边数。 接下来 m行,每行两个整数 u,v,表示点 u 到点 v 之间有道路相连。

输出格式
仅一行如果河蟹无法封锁所有道路,则输出 Impossible,否则输出一个整数,表示最少需要多少只河蟹。

输入输出样例

输入
3 3
1 2
1 3
2 3
输出
Impossible

输入
3 2
1 2
2 3
输出
1

说明/提示

【数据规模】
对于 100% 的数据,1<=n<=10^4,1<=n<=10 ^4,保证没有重边。

分析:一开始想了很久,一直没想到方法,觉得题目很难,但是一旦想到了解法,这道题就迎刃而解了。题目就是要求,每一条边至少有一个顶点要被选中,每一条边相连的两个顶点不能被同时选中。所以,每一条边都有且仅有一个被其连接的点被选中。所以我们可以考虑,相邻的点被染成不同的颜色。所以我们可以将整个图每一个连通图用黑白两色染色,取两种染色的最小值,如果无法染色,则输出Impossible。无法染色的判断也很简单,具体操作见代码。
参考:洛谷大佬题解

满分代码:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <queue> using namespace std; const int maxn=10005; int n,m; vector<int>mp[maxn]; int color[maxn];//记录染过的颜色 bool vis[maxn]; int sum[2];//记录黑白染色各自的点数 bool dfs(int x,int col){ if(vis[x]){ if(color[x]==col)return true; return false; } vis[x]=1; sum[color[x]=col]++; bool flag=true; for(int i=0;i<mp[x].size();i++){ int v=mp[x][i]; flag=flag&&dfs(v,1-col); } return flag; } int main() { while(~scanf("%d %d",&n,&m)){ memset(vis,false,sizeof(vis)); memset(color,0,sizeof(color)); for(int i=1;i<=n;i++)mp[i].clear(); int flag=1; for(int i=0;i<m;i++){ int u,v; scanf("%d %d",&u,&v); mp[u].push_back(v); mp[v].push_back(u); } int ans=0; for(int i=1;i<=n;i++){ if(vis[i])continue; sum[0]=sum[1]=0; if(!dfs(i,0)){ flag=0; break; } ans+=min(sum[0],sum[1]); } if(!flag)cout<<"Impossible"<<endl; else cout<<ans<<endl; } return 0; }

最后

以上就是追寻雪碧最近收集整理的关于P1330 封锁阳光大学的全部内容,更多相关P1330内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(69)

评论列表共有 0 条评论

立即
投稿
返回
顶部