我是靠谱客的博主 热情汉堡,最近开发中收集的这篇文章主要介绍西瓜书学习笔记---第三章 线性模型一、题目要求二、数据集介绍三、Logistics回归模型四、对率回归模型的检验五、线性判别分析六、运行结果七、附件(见我的资源),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

目录

一、题目要求

二、数据集介绍

三、Logistics回归模型

3.1 Logistics回归模型介绍

3.2 Logistics回归算法原理

3.3 Logistics回归算法核心代码解释

1. 定义Sigmoid函数

2. 梯度下降法求解logistics回归权重W 

3. 结果预测函数

4. 数据可视化处理

3.4 Logistics回归结果

四、对率回归模型的检验

4.1 乳腺癌“breast_cancer”数据集测试

4.2 糖尿病“Diabetes”数据集测试

五、线性判别分析

六、运行结果

七、附件


一、题目要求

3.3 编程实现对率回归,并给出西瓜数据集3.0α上的结果

3.4 选择两个 UCI 数据集,比较 10 折交叉验证法和留一法所估计出的对率回归的错误率。

3.5 编辑实现线性判别分析,并给出西瓜数据集 3.0α 上的结果.

二、数据集介绍

        本次实验使用到三个数据集,分别是西瓜数据集3.0α ,UCI分类数据集中的糖尿病数据集“Diabetes.xls”和乳腺癌数据集“breast_cancer.csv”。

        西瓜数据集3.0α包含17条信息,每条信息对应西瓜的2种属性,给出了该西瓜是否为好瓜,“是”表示该西瓜是好瓜,“否”表该西瓜不是好瓜。西瓜数据集3.0α的具体内容如下图所示。

        糖尿病“Diabetes”数据集共包含768条信息,每条信息对应一位可能患有糖尿病的患者的8个属性,并给出了该患者是否患有糖尿病的结果,“1”表示该患者确实患有糖尿病,“0”表该患者不患有糖尿病。“Diabetes”数据集的具体内容如下图所示。

        乳腺癌“breast_cancer”数据集共包含568条信息,每条信息对应一位可能患有乳腺癌的患者的30个属性,并给出了该患者是否患有乳腺癌的结果,“1”表示该患者确实患有乳腺癌,“0”表该患者不患有乳腺癌。乳腺癌“breast_cancer”数据集的具体内容如下所示:

三、Logistics回归模型

3.1 Logistics回归模型介绍

        Logistic Regression是经典的分类模型,常用于二分类。Logistics回归可以认为是一个被Sigmoid函数(logistic方程)所归一化后的线性回归模型。Logistic 回归的本质是:假设数据服从这个分布,然后使用极大似然估计做参数的估计。

3.2 Logistics回归算法原理

        Logistic函数(或称为Sigmoid函数),函数形式为:

Logistic函数

        对于线性边界的情况,边界形式如下:

       其中,训练数据为向量,最佳参数,构造预测函数为:

基于最大似然估计推导得到代价函数J:

构造整体代价函数Cost为:

使用梯度下降法求解Cost的最优解:

梯度下降法算法流程:

  1. 初始化W
  2. 更新W: 
  3. 迭代达到一定的次数或一定阈值

3.3 Logistics回归算法核心代码解释

1. 定义Sigmoid函数

def sigmoid(x, W):
    return 1.0 / (1.0 + np.exp(-x * W))

2. 梯度下降法求解logistics回归权重W 

# logistics回归,返回W权重
def logistic_regression(train_X, labels, alpha=0.01, max_iter=1001):
    X = np.mat(train_X)
    Y = np.mat(labels).T  #  转置为列向量
    m, n = np.shape(X)
    # 随机初始化W
    W = np.mat(np.random.randn(n, 1))
    # 更新W
    for i in range(max_iter):
        H = sigmoid(X, W)
        dW = X.T * (H - Y)  # dW:(3,1)根据梯度下降算法,需要先求得dCost/dW,此处用dW代替
        W -= alpha * dW  # 梯度下降 W = W - alpha*dCost/dW

    return W

        在梯度下降法求解logistics回归权重W的函数中,我们将训练集train_X和真实分类情况labels进行了矩阵化处理,得到X,Y矩阵。注意此时X矩阵为X=[X, 1],即为X多添加了一列全1列向量,方便计算,如下所示。

        W更新部分的代码参照梯度下降法推导的公式编写,,推广到矩阵形式即为

        最后函数返回W即为logistics回归模型的W参数。

3. 结果预测函数

# 结果输出函数
def predict(X, W):
    m = len(X)
    pred = np.zeros(m)
    for i in range(m):
        if sigmoid(X[i], W) > 0.5:      # 使用sigmoid判断,大于0.5label为1,否则为0
            pred[i] = 1

    return pred

        将训练好的模型参数W和测试集X输入到函数,根据sigmoid函数进行划分,大于0.5为1,否则为0,可以输出预测结果。

4. 数据可视化处理

# 数据可视化
def show_diagram(train_X, labels, W):
    w1 = W[0, 0]
    w2 = W[1, 0]
    b = W[2, 0]
    plot_x1 = np.arange(0, 1, 0.01)
    plot_x2 = -w1 / w2 * plot_x1 - b / w2
    plt.plot(plot_x1, plot_x2, c='r', label='decision boundary')
    plt.title('watermelon_3a')
    plt.xlabel('density')
    plt.ylabel('ratio_sugar')
    plt.scatter(train_X[labels == 0, 0].A, train_X[labels == 0, 1].A, marker='^', color='r', s=80, label='bad')
    plt.scatter(train_X[labels == 1, 0].A, train_X[labels == 1, 1].A, marker='o', color='g', s=80, label='good')
    plt.legend(loc='upper right')
    plt.show()

        根据数据集绘制散点图,并根据分类模型的结果绘制决策边界,,上式中x1对应于横坐标,x2对用于纵坐标,决策边界z=0,因此得到直线方程是:

3.4 Logistics回归结果

        输出可视化图形:

logistics回归结果

 

        可以看到,绿色代表good,红色代表bad,经过决策边界划分后,区域被分为两部分,代表二分类结果。

        输出结果部分:

logistics回归结果数据

        logistics回归最终的输出结果,前两行分别为预测结果和真实结果,下面为二分类的性能评估,准确率在71%,梯度下降模型做的还不够完美,如果使用随机梯度下降的话,结果可能会更好一些。

四、对率回归模型的检验

        选择两个UCI数据集,比较10折交叉验证法和留一法所估计的对率回归的错误率。

        10折交叉验证法函数:

1.	def K_fold(train_X, labels, splits=10):
2.	    order_id = []
3.	    total_acc = 0
4.	    sfolder = StratifiedKFold(n_splits=splits, shuffle=True)  # 十折交叉验证划分数据集
5.	    for num, (train, test) in enumerate(sfolder.split(train_X, labels)):
6.	        x_train = train_X[train, :]
7.	        y_train = labels[train]
8.	        x_test = train_X[test, :]
9.	        y_test = labels[test]
10.	        order_id.extend(test)
11.	
12.	        # 开始进行logistics回归分类训练
13.	        W = logistics.logistic_regression(x_train, y_train, alpha=0.01, max_iter=1001)  # 计算权重W
14.	        y_pred = logistics.predict(x_test, W)  # 根据训练好的模型进行预测并输出预测值
15.	
16.	        acc = accuracy_score(y_test, y_pred)
17.	        total_acc += acc
18.	        print('第', num + 1, '折验证的错误率', 1 - acc)
19.	    print("十折交叉验证的平均错误率为:", 1 - total_acc / splits)

        这部分算法在上次博客中已经详细解释过,在本部分不再赘述。

        留一法函数:

def leave_one(train_X, labels):
    loo = LeaveOneOut()
    total_acc = 0
    loo.get_n_splits(train_X)
    num = 0
    for train_index, test_index in loo.split(train_X, labels):
        x_train, x_test = train_X[train_index], train_X[test_index]
        y_train, y_test = labels[train_index], labels[test_index]

        # 开始进行logistics回归分类训练
        W = logistics.logistic_regression(x_train, y_train, alpha=0.01, max_iter=1001)  # 计算权重W
        y_pred = logistics.predict(x_test, W)   # 根据训练好的模型进行预测并输出预测值

        acc = accuracy_score(y_test, y_pred)
        total_acc += acc
        num += 1
        if num % 100 == 0:
            print("前", num, "组错误率为", 1 - (total_acc / num))
    print("留一法的平均错误率为:", 1 - (total_acc / num))

        如果数据集D的大小为N,那么用N-1条数据进行训练,用剩下的一条数据作为验证。用一条数据作为验证的坏处就是可能Eval 和Eout 相差很大,所以在留一交叉验证里,每次从D中取一组作为验证集,直到所有样本都作过验证集,共计算N次,最后对验证误差求平均,这种方法称之为留一法交叉验证。

4.1 乳腺癌“breast_cancer”数据集测试

        带入logistics回归模型后得到的10折交叉验证法和留一法所估计的对率回归的错误率结果输出如下:

4.2 糖尿病“Diabetes”数据集测试

        带入logistics回归模型后得到的10折交叉验证法和留一法所估计的对率回归的错误率结果输出如下:        

五、线性判别分析

        线性判别分析是一种经典的线性学习方法,亦称“Fisher判别分析”。LDA的思想较为朴素:给定训练样例集,设法将阳历投影到一条直线上,使得同类样例的投影点尽可能接近、异类样例的投影点尽可能远离;在队新样本进行分类时,将其投影到同样的这条直线上,再根据投影点的位置来确定新样本的类别。

       给定数据集,令分别表示第类示例的集合、均值向量、协方差矩阵。若将数据投影到直线w上,则两类样本的中心在直线上的投影分别为wTμ0wTμ1;若将所有样本点都投影到直线上,则两类样本的协方差分别为。由于直线式一维空间,因此均为试数。

        故最大化目标

       定义“类内散度矩阵”

       以及“类间散度矩阵”

       结合“拉格朗日乘子法”,可得

       在代码实现的过程中

mean1 = np.array([np.mean(x1[:, 0]), np.mean(x1[:, 1])])  
mean2 = np.array([np.mean(x2[:, 0]), np.mean(x2[:, 1])])  
Sw = np.zeros((2, 2))  
for i in range(x1.shape[0]):  
    Sw = calculate(Sw, x1[i, :] - mean1)  
for i in range(x2.shape[0]):  
    Sw = calculate(Sw, x2[i, :] - mean2)  
w = np.linalg.inv(Sw) @ (mean1 - mean2).transpose()  

        变量mean1和mean2则表示两类样例的均值向量,Sw则表示计算出的“类间散度矩阵,进而就计算出矩阵系数向量w。由于我们仅关心样例点投影到直线后的投影点直接的距离关系,所以只计算出一条过原点的直线,直线沿垂直方向移动并不影响投影结果。

六、运行结果

3.3 编程实现对率回归,并给出西瓜数据集3.0α上的结果

 输出可视化图形:

logistics回归结果

 

        可以看到,绿色代表good,红色代表bad,经过决策边界划分后,区域被分为两部分,代表二分类结果。

输出结果部分:

logistics回归结果数据

3.4 选择两个 UCI 数据集,比较 10 折交叉验证法和留一法所估计出的对率回归的错误率。

        将UCI乳腺癌数据集带入logistics回归模型后得到的10折交叉验证法和留一法所估计的对率回归的错误率结果输出如下:

        将UCI糖尿病数据集带入logistics回归模型后得到的10折交叉验证法和留一法所估计的对率回归的错误率结果输出如下:

 

3.5 编辑实现线性判别分析,并给出西瓜数据集 3.0α 上的结果.

 线性判别分析结果为:

 线性判别分析的直线为:

         由线性判别分析结果图可以看出,该数据集使用“线性判别分析”进行降维的结果并不理想。

七、附件(见我的资源)

        1. 习题3.3代码

        2.习题3.4代码

        3.习题3.5代码

最后

以上就是热情汉堡为你收集整理的西瓜书学习笔记---第三章 线性模型一、题目要求二、数据集介绍三、Logistics回归模型四、对率回归模型的检验五、线性判别分析六、运行结果七、附件(见我的资源)的全部内容,希望文章能够帮你解决西瓜书学习笔记---第三章 线性模型一、题目要求二、数据集介绍三、Logistics回归模型四、对率回归模型的检验五、线性判别分析六、运行结果七、附件(见我的资源)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(53)

评论列表共有 0 条评论

立即
投稿
返回
顶部