我是靠谱客的博主 听话泥猴桃,最近开发中收集的这篇文章主要介绍Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks 代码复现前言一、代码获取二、环境搭建总结,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks(代码复现)

  • 前言
  • 一、代码获取
  • 二、环境搭建
    • 1.环境需求
    • 2.环境搭建命令
    • 3.运行main.py
  • 总结


前言

本文主要记录边缘计算卸载DDLO算法的代码复现过程中的环境搭建


一、代码获取

GitHub链接: DDLO

This project includes:

  • memory.py: the DNN structure for DDLO, inclduing training structure and test structure
  • data: all data are stored in this subdirectory, includes:
    • MUMT_data_3X3.mat: training and testing data sets, where 3X3 means that the user number is 3, and each has 3 tasks.
  • main.py: run this file, inclduing setting system parameters
  • MUMT.py: compute system utility Q, provided with the size of all tasks and offloading decision

二、环境搭建

1.环境需求

  • python 3.6
  • tensorflow 1.8.0
  • pandas 0.24
  • numpy
  • scipy
  • matplotlib

2.环境搭建命令

  1. 安装TensorFlow 1.8.0
    先把依赖包安装了(这些依赖包有些tensorflow 1.8.0 不会自动去下载安装,但是会以红字提示,为了一次性安装好无问题,最好先把依赖包先安装了):
 python -m pip install html5lib bleach ipykernel
 python -m pip install --ignore-installed --upgrade pip setuptools
python -m pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.8.0
  1. 安装pandas
pip install pandas==0.24
  1. 安装spicy
pip install spicy
  1. 安装matplotlib
pip install matplotlib

3.运行main.py


总结

参考博客:
链接: Win10+tensorflow cpu版本安装
链接: 在anaconda环境下安装旧版本TensorFlow1.8

最后

以上就是听话泥猴桃为你收集整理的Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks 代码复现前言一、代码获取二、环境搭建总结的全部内容,希望文章能够帮你解决Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks 代码复现前言一、代码获取二、环境搭建总结所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(67)

评论列表共有 0 条评论

立即
投稿
返回
顶部