概述
一、多维数组
1、生成ndarray (array函数)
.np.array()生成多维数组
例如:import numpy as np
data1=[6,7.5,8,0,1] #创建简单的列表
print(data1)
arr1=np.array(data1) #将列表创建数组
print(arr1)
2、ndarry的数据类型
(1)dtype() #获取数组元素类型(浮点数、复数、整数等)
data=np.random.randn(2,3) #生成随机数组
print(data)
print(data.shape) #返回数组的形状
print(data.dtype)
(2)转化数组的数据类型:astype() astype生成一个新的数组
import numpy as np
a=np.array([0.11,2.2,3])
print(a)
b=a.astype(np.int)
print(b) 补充:Python中type 获取数据类型
3、numpy数组算术
(1)逐元素操作
arr=np.array([[1.,2.,3.],[4.,5.,6.]])
print(arr)
print(arr*arr)
4、索引与切片
(1)基础索引与切片
arr=np.arange(10)
print(arr)
print(arr[5:8])
arr[5:8]=12
print(arr)
(2)布尔索引
names=np.array(["Bob","Joe","Will","Bob","Will","Joe","Joe",])
print(names=="Bob") #结果:[ True False False True False False False]
5、数组转置与换轴
(1)arr.T #数组转置
补充:简单的一维和二维数组的转置就是线性代数中的行列相互交换。而对于高维数组的转置:
import numpy as np
a = np.arange(12).reshape(2, 2, 3)
#创建一个三维矩阵,由2个2*3的矩阵块组成
print(a) #结果为:
[[[ 0 1 2] #运行结果:其中每个元素都有其唯一的坐标(x,y,z)例如:0的标为(0,0,0),1的坐标为:(0,1,0)........11的坐标为(1,1,2)
[ 3 4 5]]
[[ 6 7 8]
[ 9 10 11]]]
Print(a.T) #Output为:数组变为了3个2*2的矩阵了。而各元素的坐标变为:0:(0,0,0),1:(1,0,0),........11:(2,1,1)每个元素坐标的,其实该T操作等同于后面两种方法a.transpose(2,1,0)中x轴和z轴的交换以及a.swapaxes(0,2)
[[[ 0 6]
[ 3 9]]
[[ 1 7]
[ 4 10]]
[[ 2 8]
[ 5 11]]]
(2)内积:np.dot() x.dot()等价于np.dot(x,y)
arr=np.random.randn(6,3)
print(arr)
print(arr.T)
print(np.dot(arr.T,arr))
(3)换轴:transpose()
对于高维数组,transpose()方法的参数需要得到一个由轴编号(轴编号自0开始)序列构成的元组才能对轴进行转置,只需要调换轴对应数字参数的顺序就可以将数组进行轴的变换。
arr=np.arrange(16).reshape((2,2,6))
arr.transpose((1,0,2)) #将第二个轴和第一个轴变换位置
运行结果为:[[[ 0 1 2 3]
[ 8 9 10 11]]
[[ 4 5 6 7]
[12 13 14 15]]]
Swapaxes方法,直接进行轴的交换
二、函数
1、一元通用函数
(1)平方根 sqrt()
arr=np.arange(10)
print(arr)
print(np.sqrt(arr))
(2)自然指数值 exp()
print(np.exp(arr))
(3)返回数组的小数部分和整数部分 modf()
arr=np.random.randn(7)*5
print(arr)
remainder,whole_part=np.modf(arr)
print(remainder)
print(whole_part)
2、二元通用函数
(1)最大值 maximum()
x=np.random.randn(8)
print(x)
y=np.random.randn(8)
print(y)
print(np.maximum(x,y))
3、矩阵分解的标准函数集 ???
(1)、numpy.linalg()
(1.1)、方阵的逆矩阵 inv()
(1.2)、QR分解 qr()
from numpy.linalg import inv,qr
x=np.random.randn(5,5)
print(x)
mat=x.T.dot(x) #内积
print(inv(mat)) #求逆
q,r=qr(mat)
print(r)
4、随机数生成器
numpy.random()
注意:产生随机数random.randn()和random.rand(n)的区别random.randn(n)是从标准正态分布中返回一个或者多个样本值,random.rand(n,m)表示由位于(0,1)中的随机数填充的n*m的矩阵。
三、数组编程
1、将条件逻辑作为数组操作 where()
xarr=np.array([1.1,1.2,1.3,1.4,1.5])
yarr=np.array([2.1,2.2,2.3,2.4,2.5])
cond=np.array([True,False,True,True,False]) #是否是x的值
result=np.where(cond,xarr,yarr)
print(result) #result([1.1,2.2,1.3,1.4,2.5])
2、数学和统计方法 mean()平均值、sum()求和、cumsum()#从0元素来累计和、cumprod() # 从1元素来累计积 ???
arr=np.random.randn(5,4)
print(arr)
print(arr.mean()) #取总均值
print(np.mean(arr))
print(arr.mean(axis=1)) #按列数取均值
print(arr.mean(1))
3、布尔值数组的方法 any() all() ???
print(arr.sum(0)) #从0元素来是加总
arr=np.array([[0,1,2],[3,4,5],[6,7,8]])
print(arr)
print(arr.cumsum(axis=0)) #axis=0行数加总
print(arr.cumprod(axis=1)) #axis=1列数加总
bools=np.array([False,False,True,False])
print(bools.any()) #至少有一个
print(bools.all()) #全部都是
4、计算唯一值并排序:unique()
ints=np.array([3,3,3,2,2,1,1,4,4])
print(np.unique(ints)) #唯一值 结果:[1 2 3 4]
最后
以上就是愤怒冰淇淋为你收集整理的python中的向量化编程_Python基础之数组和向量化计算总结的全部内容,希望文章能够帮你解决python中的向量化编程_Python基础之数组和向量化计算总结所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复