概述
总结:计算平台和计算系统的区别
如果我们只有几台机器,但是每天有人开发不同的流处理应用要在这几台机器上运行,我们需要一个计算平台来管理好job,让开发者按照规范配置好流程和运行时节点申请,打包成job上传,然后平台根据每个job配置动态分配资源依次执行每个job内容。
如果我们的几台机器只为一个流处理业务服务,比如实时营销,我们需要一个流计算系统,按照业务流程部署好计算节点即可,不需要运行多个job和动态分配资源,按照计算平台的方式做只会增加复杂性,开发者也不清楚每台机器上到底运行了什么逻辑。
如果你想实现一个计算平台,可以参考动态部署和进程管理功能(开发包内有指南)
你无法手工部署那台机器运行任务实现类,必须先提交给Hadoop,让它动态投放资源执行,对你不可见
如果我们只有几台机器,但是每天有人开发不同的流处理应用要在这几台机器上运行,我们需要一个计算平台来管理好job,让开发者按照规范配置好流程和运行时节点申请,打包成job上传,然后平台根据每个job配置动态分配资源依次执行每个job内容。
如果我们的几台机器只为一个流处理业务服务,比如实时营销,我们需要一个流计算系统,按照业务流程部署好计算节点即可,不需要运行多个job和动态分配资源,按照计算平台的方式做只会增加复杂性,开发者也不清楚每台机器上到底运行了什么逻辑。
如果你想实现一个计算平台,可以参考动态部署和进程管理功能(开发包内有指南)
你无法手工部署那台机器运行任务实现类,必须先提交给Hadoop,让它动态投放资源执行,对你不可见
hadoop 计算平台
fourinone 框架
jppf 计算系统
strom 流计算 (计算平台)
spark 内存流计算 (计算平台)
akka 分布式工具 框架
dubbo 服务化平台
zookeeper 分布式协调工具
flume 分布式日志分析
最后
以上就是欣慰香水为你收集整理的计算平台 vs 计算系统的全部内容,希望文章能够帮你解决计算平台 vs 计算系统所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复