我是靠谱客的博主 谨慎小蘑菇,最近开发中收集的这篇文章主要介绍基于Qlearning强化学习的倒立摆控制系统matlab仿真1.算法描述2.仿真效果预览3.MATLAB部分代码预览4.完整MATLAB程序,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

目录

1.算法描述

2.仿真效果预览

3.MATLAB部分代码预览

4.完整MATLAB程序


1.算法描述

        强化学习通常包括两个实体agent和environment。两个实体的交互如下,在environment的statestst下,agent采取actionatat进而得到rewardrtrt 并进入statest+1st+1。Q-learning的核心是Q-table。Q-table的行和列分别表示state和action的值,Q-table的值Q(s,a)Q(s,a)衡量当前states采取actiona到底有多好。

        在每一时刻,智能体观测环境的当下状态并选择一个动作,这会导致环境转移到一个新的状态,与此同时环境会返回给智能体一个奖励,该奖励反映了动作所导致的结果。在倒立摆任务中,每一个时间步的奖励均为+1,但是一旦小车偏离中心超过4.8个单位或者杆的倾斜超过15度,任务就会终止。因此,我们的目标是使得该任务能够尽可能地运行得更久,以便获得更多的收益。原始倒立摆任务中,智能体的输入包含4个实数(位置,速度等),但实际上,神经网络可以直接通过观察场景来完成任务,所以我们可以直接使用以小车为中心的屏幕补丁作为输入。严格来说,我们设计的状态是当前屏幕补丁与上一个屏幕补丁的差值,这使得智能体能够从一张图像中推断出杆的速度。

       为了训练DQN,我们将使用经验回放池(experience replay memory)来存储智能体所观测到的环境状态转移情况,在之后的训练中我们可以充分利用这些数据。通过对经验回放池中的数据进行随机采样,组成一个批次的转移情况是互不相关(decorrelated)的,这极大地提升了DQN训练的性能和稳定性。

主要步骤如下:

       采样得到一个批次的样本,将这些样本对应的张量连接成一个单独的张量;
分别利用策略Q网络与目标Q网络计算 与Q(st,at)​​​​与V(st+1)=maxaQ(st+1,a) ​​​​,利用它们计算损失函数.。另外,如果 s​​​​ 为终止状态,则令 V(s)=0 ​​​​
更新Q网络参数。目标Q网络的参数每隔一段时间从主Q网络处固定而来,在本例中,我们在每个episode更新一次目标Q网络。

2.仿真效果预览

matlab2022a仿真结果如下:

3.MATLAB部分代码预览

 
for trial=1:MaxTr,      %外部循环开始 
    count=0; 
    failure=0; 
    failReason=0; 
    lfts = 1; 
    newSt = inistate; 
    inputs = newSt./NF; 
    lc = Initlc; 
    la = Initla; 
         
    xhist=newSt; 
    
    %计算newAction 
    ha = inputs*wa1; 
    g = (1 - exp(-ha))./(1 + exp(-ha)); 
    va = g*wa2; 
    newAction = (1 - exp(-va))./(1 + exp(-va)); 
    %计算J 
    inp=[inputs newAction]; 
    qc=inp*wc1; 
    p = (1 - exp(-qc))./(1 + exp(-qc)); 
    J=p*wc2; 
     
    Jprev = J; 
    
    while(lfts<Tit),        %内部循环开始 
             
         if (rem(lfts,500)==0), 
            disp(['It is ' int2str(lfts) ' time steps now......']); 
         end 
          
         %生成控制信号 
                if (newAction >= 0) 
                    sgnf = 1; 
                else 
                    sgnf = -1; 
                end 
                u = Mag*sgnf;		%bang-bang control 
 
		    %Plug in the model 
            [T,Xf]=ode45('cartpole_model',[0 tstep],newSt,[],u); 
	        a=size(Xf); 
	        newSt=Xf(a(1),:);         
            inputs=newSt./NF;	%input normalization    
             
                %计算newAction 
                ha = inputs*wa1; 
                g = (1 - exp(-ha))./(1 + exp(-ha)); 
                va = g*wa2; 
                newAction = (1 - exp(-va))./(1 + exp(-va)); 
                %calculate new J     
                inp=[inputs newAction]; 
                qc=inp*wc1; 
                p = (1 - exp(-qc))./(1 + exp(-qc)); 
                J=p*wc2; 
                 
                xhist=[xhist;newSt]; 
             
		    %%===========================================================%% 
		    %%求取强化信号r(t),即reinf                                   %% 
		    %%===========================================================%% 
          
            if (abs(newSt(1)) > FailTheta) 
                reinf = 1; 
                failure = 1; 
                failReason = 1; 
            elseif (abs(newSt(3)) > Boundary) 
                reinf = 1; 
                failure = 1; 
                failReason = 2; 
            else 
                reinf = 0; 
            end 
     
    	    %%================================%% 
    	    %% learning rate update scheme    %% 
    	    %%================================%% 
            
            if (rem(lfts,5)==0) 
                lc = lc - 0.05; 
                la = la - 0.05; 
            end 
           
      	    if (lc<0.01) 
                lc=0.005; 
            end 
           
            if (la<0.01) 
                la=0.005; 
            end 
           
            %%================================================%% 
            %% internal weights updating cycles for critnet   %% 
            %%================================================%% 
                    
            cyc = 0; 
            ecrit = alpha*J-(Jprev-reinf); 
		    Ec = 0.5 * ecrit^2; 
            while (Ec>Tc & cyc<=Ncrit), 
                    gradEcJ=alpha*ecrit; 
    				%----for the first layer(input to hidden layer)----------- 
                    gradqwc1 = [inputs'; newAction]; 
                    for i=1:N_Hidden, 
                        gradJp = wc2(i); 
                        gradpq = 0.5*(1-p(i)^2); 
                        wc1(:,i) = wc1(:,i) - lc*gradEcJ*gradJp*gradpq*gradqwc1; 
                    end        
                    %----for the second layer(hidden layer to output)----------- 
                    gradJwc2=p'; 
                    wc2 = wc2- lc*gradEcJ*gradJwc2; 
                    %----compute new  J---- 
                    inp=[inputs newAction]; 
                    qc=inp*wc1; 
                    p = (1 - exp(-qc))./(1 + exp(-qc)); 
                    J=p*wc2; 
 
                cyc = cyc +1; 
                ecrit = alpha*J-(Jprev-reinf); 
                Ec = 0.5 * ecrit^2; 
            end                                 % end of "while (Ec>0.05 & cyc<=Ncrit)" 
             
            %normalization weights for critical network 
                if (max(max(abs(wc1)))>1.5) 
                    wc1=wc1/max(max(abs(wc1))); 
                end 
                if max(max(abs(wc2)))>1.5 
                    wc2=wc2/max(max(abs(wc2))); 
                end 
                      
            %%=============================================%% 
            %% internal weights updating cycles for actnet %% 
            %%=============================================%%                 
            cyc = 0;             
            eact = J - Uc; 
            Ea = 0.5*eact^2; 
            while (Ea>Ta & cyc<=Nact), 
                graduv = 0.5*(1-newAction^2);              
                gradEaJ = eact; 
                gradJu = 0; 
                   for i=1:N_Hidden, 
                       gradJu = gradJu + wc2(i)*0.5*(1-p(i)^2)*wc1(WC_Inputs,i); 
                   end 
                    %----for the first layer(input to hidden layer)----------- 
                    for (i=1:N_Hidden), 
                        gradvg = wa2(i); 
                        gradgh = 0.5*(1-g(i)^2); 
                        gradhwa1 = inputs'; 
                        wa1(:,i)=wa1(:,i)-la*gradEaJ*gradJu*graduv*gradvg*gradgh*gradhwa1; 
                    end 
                    %----for the second layer(hidden layer to output)----------- 
                    gradvwa2 = g'; 
                    wa2=wa2-la*gradEaJ*gradJu*graduv*gradvwa2; 
                    %----compute new J and newAction-------  
                    ha = inputs*wa1; 
                    g = (1 - exp(-ha))./(1 + exp(-ha)); 
                    va = g*wa2; 
                    newAction = (1 - exp(-va))./(1 + exp(-va)); 
                     
                    inp=[inputs newAction]; 
                    qc=inp*wc1; 
                    p = (1 - exp(-qc))./(1 + exp(-qc)); 
                    J=p*wc2; 
                         
                cyc = cyc+1; 
                eact = J - Uc; 
                Ea = 0.5*eact^2;   
            end                       %end of "while (Ea>Ta & cyc<=Nact)" 
            
            if ~failure 
                Jprev=J; 
            else 
                break;                %another trial 即跳出“while(lfts<Tit),” 
            end 
            lfts=lfts+1; 
        end                           %end of "while(lfts<Tit)" 结束内部循环 
           
        msgstr1=['Trial # ' int2str(trial) ' has  ' int2str(lfts) ' time steps.']; 
   	    msgstr21=['Trial # ' int2str(trial) ' has successfully balanced for at least ']; 
   	    msgstr22=[msgstr21 int2str(lfts) ' time steps ']; 
A_027

4.完整MATLAB程序

matlab源码说明_我爱C编程的博客-CSDN博客

V

最后

以上就是谨慎小蘑菇为你收集整理的基于Qlearning强化学习的倒立摆控制系统matlab仿真1.算法描述2.仿真效果预览3.MATLAB部分代码预览4.完整MATLAB程序的全部内容,希望文章能够帮你解决基于Qlearning强化学习的倒立摆控制系统matlab仿真1.算法描述2.仿真效果预览3.MATLAB部分代码预览4.完整MATLAB程序所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(50)

评论列表共有 0 条评论

立即
投稿
返回
顶部