我是靠谱客的博主 舒服水壶,最近开发中收集的这篇文章主要介绍tensorflow获取变量维度信息,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

tensorflow版本1.4

获取变量维度是一个使用频繁的操作,在tensorflow中获取变量维度主要用到的操作有以下三种:

  • Tensor.shape
  • Tensor.get_shape()
  • tf.shape(input,name=None,out_type=tf.int32)

对上面三种操作做一下简单分析:(这三种操作先记作A、B、C)

A 和 B 基本一样,只不过前者是Tensor的属性变量,后者是Tensor的函数。
A 和 B 均返回TensorShape类型,而 C 返回一个1D的out_type类型的Tensor。
A 和 B 可以在任意位置使用,而 C 必须在Session中使用。
A 和 B 获取的是静态shape,可以返回不完整的shape; C 获取的是动态的shape,必须是完整的shape。

另外,补充从TenaorShape变量中获取具体维度数值的方法

# 直接获取TensorShape变量的第i个维度值
x.shape[i].value
x.get_shape()[i].value

# 将TensorShape变量转化为list类型,然后直接按照索引取值
x.get_shape().as_list()

下面给出全部的示例程序:

import tensorflow as tf

x1 = tf.constant([[1,2,3],[4,5,6]])
# 占位符创建变量,第一个维度初始化为None,表示暂不指定维度
x2 = tf.placeholder(tf.float32,[None, 2,3])
print('x1.shape:',x1.shape)
print('x2.shape:',x2.shape)
print('x2.shape[1].value:',x2.shape[1].value)
print('tf.shape(x1):',tf.shape(x1))
print('tf.shape(x2):',tf.shape(x2))
print('x1.get_shape():',x1.get_shape())
print('x2.get_shape():',x2.get_shape())
print('x2.get_shape.as_list[1]:',x2.get_shape().as_list()[1])
shapeOP1 = tf.shape(x1)
shapeOP2 = tf.shape(x2)
with tf.Session() as sess:
 print('Within session, tf.shape(x1):',sess.run(shapeOP1))
 # 由于x2未进行完整的变量填充,其维度不完整,因此执行下面的命令将会报错
 # print('Within session, tf.shape(x2):',sess.run(shapeOP2)) # 此命令将会报错

输出结果为:

x1.shape: (2, 3)
x2.shape: (?, 2, 3)
x2.shape[1].value: 2
tf.shape(x1): Tensor("Shape:0", shape=(2,), dtype=int32)
tf.shape(x2): Tensor("Shape_1:0", shape=(3,), dtype=int32)
x1.get_shape(): (2, 3)
x2.get_shape(): (?, 2, 3)
x2.get_shape.as_list[1]: 2
Within session, tf.shape(x1): [2 3]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

最后

以上就是舒服水壶为你收集整理的tensorflow获取变量维度信息的全部内容,希望文章能够帮你解决tensorflow获取变量维度信息所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(128)

评论列表共有 0 条评论

立即
投稿
返回
顶部