我是靠谱客的博主 强健饼干,这篇文章主要介绍【深度学习】TensorFlow实现简单的多层感知机,现在分享给大家,希望可以做个参考。

数据集在文末

总结:

  1. tf.keras.layers.Dense(os, is, act)创建一个隐藏层
  2. csv_obj.iloc[:, :]获取dataframe对象的某行某列数据(iloc按照index,loc按照name)
  3. plt.scatter(x,y)可视化数据

(1)加载数据集、数据可视化分析

import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
%matplotlib inline

data=pd.read_csv('dataset/data1.csv')
data.head()#投放广告与sales关系

# relationship between TV and sales, radio&sales, newspaper&sales
plt.scatter(data.TV, data.sales)
plt.scatter(data.radio,data.sales)
plt.scatter(data.newspaper, data.sales)

(2)多层感知机模型训练与预测

#tf.keras.layers.Dense(output_size, input_size, activation_func), this could be as one hidden layer, as output_size is the hidden layer's size
model=tf.keras.Sequential([tf.keras.layers.Dense(10,input_shape=(3,),activation='relu'),#add activation func,size of hidden layer is 10
                          tf.keras.layers.Dense(1)])
model.summary()

x=data.iloc[:,0:-1]
y=data.iloc[:,-1]
model.compile(optimizer='adam',loss='mse')
# print(x,y)

model.fit(x,y,epochs=100)

test=data.iloc[:10,0:-1]
model.predict(test)#return predicted value
label=data.iloc[:10,-1]
print(label)#actual value

预测值:
在这里插入图片描述
实际值:
在这里插入图片描述

数据集:data1.csv
TV,radio,newspaper,sales
1,230.1,37.8,69.2,22.1
2,44.5,39.3,45.1,10.4
3,17.2,45.9,69.3,9.3
4,151.5,41.3,58.5,18.5
5,180.8,10.8,58.4,12.9
6,8.7,48.9,75,7.2
7,57.5,32.8,23.5,11.8
8,120.2,19.6,11.6,13.2
9,8.6,2.1,1,4.8
10,199.8,2.6,21.2,10.6
11,66.1,5.8,24.2,8.6
12,214.7,24,4,17.4
13,23.8,35.1,65.9,9.2
14,97.5,7.6,7.2,9.7
15,204.1,32.9,46,19
16,195.4,47.7,52.9,22.4
17,67.8,36.6,114,12.5
18,281.4,39.6,55.8,24.4
19,69.2,20.5,18.3,11.3
20,147.3,23.9,19.1,14.6
21,218.4,27.7,53.4,18
22,237.4,5.1,23.5,12.5
23,13.2,15.9,49.6,5.6
24,228.3,16.9,26.2,15.5
25,62.3,12.6,18.3,9.7
26,262.9,3.5,19.5,12
27,142.9,29.3,12.6,15
28,240.1,16.7,22.9,15.9
29,248.8,27.1,22.9,18.9
30,70.6,16,40.8,10.5
31,292.9,28.3,43.2,21.4
32,112.9,17.4,38.6,11.9
33,97.2,1.5,30,9.6
34,265.6,20,0.3,17.4
35,95.7,1.4,7.4,9.5
36,290.7,4.1,8.5,12.8
37,266.9,43.8,5,25.4
38,74.7,49.4,45.7,14.7
39,43.1,26.7,35.1,10.1
40,228,37.7,32,21.5
41,202.5,22.3,31.6,16.6
42,177,33.4,38.7,17.1
43,293.6,27.7,1.8,20.7
44,206.9,8.4,26.4,12.9
45,25.1,25.7,43.3,8.5
46,175.1,22.5,31.5,14.9
47,89.7,9.9,35.7,10.6
48,239.9,41.5,18.5,23.2
49,227.2,15.8,49.9,14.8
50,66.9,11.7,36.8,9.7
51,199.8,3.1,34.6,11.4
52,100.4,9.6,3.6,10.7
53,216.4,41.7,39.6,22.6
54,182.6,46.2,58.7,21.2
55,262.7,28.8,15.9,20.2
56,198.9,49.4,60,23.7
57,7.3,28.1,41.4,5.5
58,136.2,19.2,16.6,13.2
59,210.8,49.6,37.7,23.8
60,210.7,29.5,9.3,18.4
61,53.5,2,21.4,8.1
62,261.3,42.7,54.7,24.2
63,239.3,15.5,27.3,15.7
64,102.7,29.6,8.4,14
65,131.1,42.8,28.9,18
66,69,9.3,0.9,9.3
67,31.5,24.6,2.2,9.5
68,139.3,14.5,10.2,13.4
69,237.4,27.5,11,18.9
70,216.8,43.9,27.2,22.3
71,199.1,30.6,38.7,18.3
72,109.8,14.3,31.7,12.4
73,26.8,33,19.3,8.8
74,129.4,5.7,31.3,11
75,213.4,24.6,13.1,17
76,16.9,43.7,89.4,8.7
77,27.5,1.6,20.7,6.9
78,120.5,28.5,14.2,14.2
79,5.4,29.9,9.4,5.3
80,116,7.7,23.1,11
81,76.4,26.7,22.3,11.8
82,239.8,4.1,36.9,12.3
83,75.3,20.3,32.5,11.3
84,68.4,44.5,35.6,13.6
85,213.5,43,33.8,21.7
86,193.2,18.4,65.7,15.2
87,76.3,27.5,16,12
88,110.7,40.6,63.2,16
89,88.3,25.5,73.4,12.9
90,109.8,47.8,51.4,16.7
91,134.3,4.9,9.3,11.2
92,28.6,1.5,33,7.3
93,217.7,33.5,59,19.4
94,250.9,36.5,72.3,22.2
95,107.4,14,10.9,11.5
96,163.3,31.6,52.9,16.9
97,197.6,3.5,5.9,11.7
98,184.9,21,22,15.5
99,289.7,42.3,51.2,25.4
100,135.2,41.7,45.9,17.2
101,222.4,4.3,49.8,11.7
102,296.4,36.3,100.9,23.8
103,280.2,10.1,21.4,14.8
104,187.9,17.2,17.9,14.7
105,238.2,34.3,5.3,20.7
106,137.9,46.4,59,19.2
107,25,11,29.7,7.2
108,90.4,0.3,23.2,8.7
109,13.1,0.4,25.6,5.3
110,255.4,26.9,5.5,19.8
111,225.8,8.2,56.5,13.4
112,241.7,38,23.2,21.8
113,175.7,15.4,2.4,14.1
114,209.6,20.6,10.7,15.9
115,78.2,46.8,34.5,14.6
116,75.1,35,52.7,12.6
117,139.2,14.3,25.6,12.2
118,76.4,0.8,14.8,9.4
119,125.7,36.9,79.2,15.9
120,19.4,16,22.3,6.6
121,141.3,26.8,46.2,15.5
122,18.8,21.7,50.4,7
123,224,2.4,15.6,11.6
124,123.1,34.6,12.4,15.2
125,229.5,32.3,74.2,19.7
126,87.2,11.8,25.9,10.6
127,7.8,38.9,50.6,6.6
128,80.2,0,9.2,8.8
129,220.3,49,3.2,24.7
130,59.6,12,43.1,9.7
131,0.7,39.6,8.7,1.6
132,265.2,2.9,43,12.7
133,8.4,27.2,2.1,5.7
134,219.8,33.5,45.1,19.6
135,36.9,38.6,65.6,10.8
136,48.3,47,8.5,11.6
137,25.6,39,9.3,9.5
138,273.7,28.9,59.7,20.8
139,43,25.9,20.5,9.6
140,184.9,43.9,1.7,20.7
141,73.4,17,12.9,10.9
142,193.7,35.4,75.6,19.2
143,220.5,33.2,37.9,20.1
144,104.6,5.7,34.4,10.4
145,96.2,14.8,38.9,11.4
146,140.3,1.9,9,10.3
147,240.1,7.3,8.7,13.2
148,243.2,49,44.3,25.4
149,38,40.3,11.9,10.9
150,44.7,25.8,20.6,10.1
151,280.7,13.9,37,16.1
152,121,8.4,48.7,11.6
153,197.6,23.3,14.2,16.6
154,171.3,39.7,37.7,19
155,187.8,21.1,9.5,15.6
156,4.1,11.6,5.7,3.2
157,93.9,43.5,50.5,15.3
158,149.8,1.3,24.3,10.1
159,11.7,36.9,45.2,7.3
160,131.7,18.4,34.6,12.9
161,172.5,18.1,30.7,14.4
162,85.7,35.8,49.3,13.3
163,188.4,18.1,25.6,14.9
164,163.5,36.8,7.4,18
165,117.2,14.7,5.4,11.9
166,234.5,3.4,84.8,11.9
167,17.9,37.6,21.6,8
168,206.8,5.2,19.4,12.2
169,215.4,23.6,57.6,17.1
170,284.3,10.6,6.4,15
171,50,11.6,18.4,8.4
172,164.5,20.9,47.4,14.5
173,19.6,20.1,17,7.6
174,168.4,7.1,12.8,11.7
175,222.4,3.4,13.1,11.5
176,276.9,48.9,41.8,27
177,248.4,30.2,20.3,20.2
178,170.2,7.8,35.2,11.7
179,276.7,2.3,23.7,11.8
180,165.6,10,17.6,12.6
181,156.6,2.6,8.3,10.5
182,218.5,5.4,27.4,12.2
183,56.2,5.7,29.7,8.7
184,287.6,43,71.8,26.2
185,253.8,21.3,30,17.6
186,205,45.1,19.6,22.6
187,139.5,2.1,26.6,10.3
188,191.1,28.7,18.2,17.3
189,286,13.9,3.7,15.9
190,18.7,12.1,23.4,6.7
191,39.5,41.1,5.8,10.8
192,75.5,10.8,6,9.9
193,17.2,4.1,31.6,5.9
194,166.8,42,3.6,19.6
195,149.7,35.6,6,17.3
196,38.2,3.7,13.8,7.6
197,94.2,4.9,8.1,9.7
198,177,9.3,6.4,12.8
199,283.6,42,66.2,25.5
200,232.1,8.6,8.7,13.4

最后

以上就是强健饼干最近收集整理的关于【深度学习】TensorFlow实现简单的多层感知机的全部内容,更多相关【深度学习】TensorFlow实现简单内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部