概述
这里写目录标题
- 起因
- 配置环境
- 问题探索
- 一、由近及远
- 二、追根溯源
- 三、问题总结
- 本文源码
起因
近日,博主在学习《动手学深度学习》(PyTorch版)时,用fashion_mnist复现LeNet时想知道这个for循环运行了多少次:
代码如下:(在文末会给出整个代码)
for X, y in train_iter:
X = X.to(device)
y = y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
optimizer.zero_grad()
l.backward()
optimizer.step()
train_l_sum += l.cpu().item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
n += y.shape[0]
batch_count += 1
test_acc = evaluate_accuracy(test_iter, net)
这段代码的意思就是从train_iter读取样本X和标签y,但是奇怪的是这个for循环执行次数为235次,但是设置的batch_size 为256。这引起了我的兴趣,这个235的数从何而来,本代码自始至终从未定义过235这个数
通过Debug注意到:
更吊轨的是train_iter长度为40,40 在此代码中也从未出定义过。
如果你和我有一样的困惑,并感兴趣的话请往下继续观看,这或许会对你理解源代码有所帮助
配置环境
使用环境:python3.8
平台:Windows10
IDE:PyCharm
问题探索
一、由近及远
-
这个疑问发生的地方在函数
def train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
中 -
这个函数传入的数据被用于for循环:
for X, y in train_iter:
在于 train_iter变量 -
train_iter是通过函数
train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
传入的 -
即train_ch5函数外部的train_iter将其数据传给了train_ch5函数内部的train_ite
-
train_ch5函数外部的train_iter的由来是通过赋值:
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
得到的
最终定位到问题关键:d2l.load_data_fashion_mnist(batch_size=batch_size)
函数
二、追根溯源
d2l.load_data_fashion_mnist()
的源码如下:
def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
"""Download the fashion mnist dataset and then load into memory."""
trans = []
if resize:
trans.append(torchvision.transforms.Resize(size=resize))
trans.append(torchvision.transforms.ToTensor())
transform = torchvision.transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
if sys.platform.startswith('win'):
num_workers = 0 # 0表示不用额外的进程来加速读取数据
else:
num_workers = 4
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_iter, test_iter
可以看到,里面涉及到train_iter数据的内容关键为这三句代码:
transform = torchvision.transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
而其中第一句
transform = torchvision.transforms.Compose(trans)
意义再远转换图片格式为张量
第二句为第三句通过支撑,所以关键在于第三句
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
第三句的意思为按照要求(传入参数)加载数据,其实就是老生常谈的DataLoader
问题了,DataLoader
源码如下(删去了源码中大部分的注释):
class DataLoader(object):
__initialized = False
def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=None,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None, multiprocessing_context=None):
torch._C._log_api_usage_once("python.data_loader")
if num_workers < 0:
raise ValueError('num_workers option should be non-negative; '
'use num_workers=0 to disable multiprocessing.')
if timeout < 0:
raise ValueError('timeout option should be non-negative')
self.dataset = dataset
self.num_workers = num_workers
self.pin_memory = pin_memory
self.timeout = timeout
self.worker_init_fn = worker_init_fn
self.multiprocessing_context = multiprocessing_context
if isinstance(dataset, IterableDataset):
self._dataset_kind = _DatasetKind.Iterable
if shuffle is not False:
raise ValueError(
"DataLoader with IterableDataset: expected unspecified "
"shuffle option, but got shuffle={}".format(shuffle))
elif sampler is not None:
# See NOTE [ Custom Samplers and IterableDataset ]
raise ValueError(
"DataLoader with IterableDataset: expected unspecified "
"sampler option, but got sampler={}".format(sampler))
elif batch_sampler is not None:
# See NOTE [ Custom Samplers and IterableDataset ]
raise ValueError(
"DataLoader with IterableDataset: expected unspecified "
"batch_sampler option, but got batch_sampler={}".format(batch_sampler))
else:
self._dataset_kind = _DatasetKind.Map
if sampler is not None and shuffle:
raise ValueError('sampler option is mutually exclusive with '
'shuffle')
if batch_sampler is not None:
# auto_collation with custom batch_sampler
if batch_size != 1 or shuffle or sampler is not None or drop_last:
raise ValueError('batch_sampler option is mutually exclusive '
'with batch_size, shuffle, sampler, and '
'drop_last')
batch_size = None
drop_last = False
elif batch_size is None:
# no auto_collation
if shuffle or drop_last:
raise ValueError('batch_size=None option disables auto-batching '
'and is mutually exclusive with '
'shuffle, and drop_last')
if sampler is None: # give default samplers
if self._dataset_kind == _DatasetKind.Iterable:
# See NOTE [ Custom Samplers and IterableDataset ]
sampler = _InfiniteConstantSampler()
else: # map-style
if shuffle:
sampler = RandomSampler(dataset)
else:
sampler = SequentialSampler(dataset)
if batch_size is not None and batch_sampler is None:
# auto_collation without custom batch_sampler
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
self.batch_size = batch_size
self.drop_last = drop_last
self.sampler = sampler
self.batch_sampler = batch_sampler
if collate_fn is None:
if self._auto_collation:
collate_fn = _utils.collate.default_collate
else:
collate_fn = _utils.collate.default_convert
self.collate_fn = collate_fn
self.__initialized = True
self._IterableDataset_len_called = None
其中传入参数的意义可以参考这篇博客:传送门
好了继续回到我们的问题
我们来理一下思路:我们找到了torch.utils.data.DataLoader()
源代码,通过阅读源代码,我们期望找到该源码返回的train_iter
为什么是235的长度
通过Debug进入dataloader.py:发现
可以看到,235这个数字首先出现在batch_sampler
中,那么问题转到了命令
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
即函数BatchSampler(sampler, batch_size, drop_last)
我们理一下这个函数传入的参数意思
- sampler:读取的fashion_mnist训练数据集,长度为60000
- batch_size:小批量的大小,设定值为256
- drop_last:一个为False的bool型
好了,我们继续对BatchSampler()
进行Debug,进入sampler.py发现BatchSampler()
函数相对简单,其源码(同样的,删去了部分注释)如下:
class BatchSampler(Sampler)
def __init__(self, sampler, batch_size, drop_last):
if not isinstance(sampler, Sampler):
raise ValueError("sampler should be an instance of "
"torch.utils.data.Sampler, but got sampler={}"
.format(sampler))
if not isinstance(batch_size, _int_classes) or isinstance(batch_size, bool) or
batch_size <= 0:
raise ValueError("batch_size should be a positive integer value, "
"but got batch_size={}".format(batch_size))
if not isinstance(drop_last, bool):
raise ValueError("drop_last should be a boolean value, but got "
"drop_last={}".format(drop_last))
self.sampler = sampler
self.batch_size = batch_size
self.drop_last = drop_last
# print("**")
def __iter__(self):
batch = []
for idx in self.sampler:
batch.append(idx)
if len(batch) == self.batch_size:
yield batch
batch = []
if len(batch) > 0 and not self.drop_last:
yield batch
def __len__(self):
if self.drop_last:
return len(self.sampler) // self.batch_size
else:
return (len(self.sampler) + self.batch_size - 1) // self.batch_size
在Debug中会发现,BatchSampler()
源码真正执行的部分就只有这一块儿:
def __init__(self, sampler, batch_size, drop_last):
if not isinstance(sampler, Sampler):
raise ValueError("sampler should be an instance of "
"torch.utils.data.Sampler, but got sampler={}"
.format(sampler))
if not isinstance(batch_size, _int_classes) or isinstance(batch_size, bool) or
batch_size <= 0:
raise ValueError("batch_size should be a positive integer value, "
"but got batch_size={}".format(batch_size))
if not isinstance(drop_last, bool):
raise ValueError("drop_last should be a boolean value, but got "
"drop_last={}".format(drop_last))
self.sampler = sampler
self.batch_size = batch_size
self.drop_last = drop_last
# print("**")
在Debug的时候会解开print("**")
的注释,来查看运行进程
运行完上面一段后最后一句print("**")
就会跳出BatchSampler()
但是上面打码中根本没有return回去任何东西,真是让人头大的情况
及时将下面的
def __iter__(self):
和
def __len__(self):
代码打上断点也直接跳出BatchSampler()
为了解决上面的 问题,查看
def __iter__(self):
和
def __len__(self):
将这段代码:到底有没有运行,在二者下第一节加上一个print函数,具体如下:
def __iter__(self):
print("***")
batch = []
for idx in self.sampler:
batch.append(idx)
if len(batch) == self.batch_size:
yield batch
batch = []
if len(batch) > 0 and not self.drop_last:
yield batch
def __len__(self):
print("****")
if self.drop_last:
return len(self.sampler) // self.batch_size
else:
return (len(self.sampler) + self.batch_size - 1) // self.batch_size
再运行代码,发现在Console打印出如下:
可以知道:BatchSampler()
源码中运行了:
def __len__(self):
下的代码,即:
def __len__(self):
print("****")
if self.drop_last:
return len(self.sampler) // self.batch_size
else:
return (len(self.sampler) + self.batch_size - 1) // self.batch_size
我们来细细看一下这个函数下面的流程:
当self.drop_last
为true时,返回len(self.sampler) // self.batch_size
当self.drop_last
为false时,返回(len(self.sampler) + self.batch_size - 1) // self.batch_size
在Debug时可以发现:
self.drop_last
为false,所以返回的是:
self.sampler
的长度+self.batch_size
再减去1最后整除self.batch_size
以本案以为例:
(60000+256-1)//256 = 235
哇哦!我们终于得到了235的来源了
好了,到这里我们就探清了235的来源;
同理,我们的test_iter
为40的来源便是:
(10000+256-1)//256 = 40
有必要解释一下,为什么test_iter
相较于train_iter
从60000变成了10000
因为fashion_mnist数据集中训练集的长度为60000,测试集长度为10000
三、问题总结
我们的初衷是为了知道循环次数,知道循环次数的目的在于知道循环的原理,为什么要这样循环,这样循环的好处在于哪儿?
我们回到本文最开始的for循环(将其上面的迭代此处循环也加上)中:
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
for X, y in train_iter:
X = X.to(device)
y = y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
optimizer.zero_grad()
l.backward()
optimizer.step()
train_l_sum += l.cpu().item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
n += y.shape[0]
batch_count += 1
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
% (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))
面对这中循环,在训练网络中随处可见,不禁思考:这个循环的意义何在?
- 首先进入循环着,
epoch
为循环迭代次数,第一次迭代epoch
为0 - 在这个迭代中首先将误差项(
train_l_sum, train_acc_sum, n, batch_count
)设为0 - 然后进入对数据处理的循环中,从训练集
train_iter
中读取样本数据X和真实标签y,每次读入个数为256个,一共读取235次
- 随后进行向前传递
y_hat = net(X)
- 再计算损失函数
l = loss(y_hat, y)
- 再反向传播,采用优化算法进行对参数进行修正,以得到最优的网络参数
- 并且每次迭代中会计算偏差值,以得到每次循环之后的正确率
本文源码
# 本书链接https://tangshusen.me/Dive-into-DL-PyTorch/#/chapter03_DL-basics/3.8_mlp
# 5.5 卷积神经网络(LeNet)
#注释:黄文俊
#邮箱:hurri_cane@qq.com
import time
import torch
from torch import nn, optim
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
# 卷积层块
self.conv = nn.Sequential(
nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
nn.Sigmoid(),
nn.MaxPool2d(2, 2), # kernel_size, stride
nn.Conv2d(6, 16, 5),
nn.Sigmoid(),
nn.MaxPool2d(2, 2)
)
# 全连接层块
self.fc = nn.Sequential(
nn.Linear(16*4*4, 120),
nn.Sigmoid(),
nn.Linear(120, 84),
nn.Sigmoid(),
nn.Linear(84, 10)
)
def forward(self, img):
feature = self.conv(img)
output = self.fc(feature.view(img.shape[0], -1))
return output
net = LeNet()
print(net)
# 本函数已保存在d2lzh_pytorch包中方便以后使用。该函数将被逐步改进。
def evaluate_accuracy(data_iter, net, device=None):
if device is None and isinstance(net, torch.nn.Module):
# 如果没指定device就使用net的device
device = list(net.parameters())[0].device
acc_sum, n = 0.0, 0
with torch.no_grad():
for X, y in data_iter:
if isinstance(net, torch.nn.Module):
net.eval() # 评估模式, 这会关闭dropout
acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
net.train() # 改回训练模式
else: # 自定义的模型, 3.13节之后不会用到, 不考虑GPU
if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
# 将is_training设置成False
acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item()
else:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
net = net.to(device)
print("training on ", device)
loss = torch.nn.CrossEntropyLoss()
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
for X, y in train_iter:
X = X.to(device)
y = y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
optimizer.zero_grad()
l.backward()
optimizer.step()
train_l_sum += l.cpu().item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
n += y.shape[0]
batch_count += 1
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
% (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))
# 下面我们来实验LeNet模型。实验中,我们仍然使用Fashion-MNIST作为训练数据集。
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
print("*"*50)
最后
以上就是畅快自行车为你收集整理的深度学习中训练迭代次数理解【源码阅读技巧分享】【深度学习循环迭代理解】【for X, y in train_iter:】起因配置环境问题探索本文源码的全部内容,希望文章能够帮你解决深度学习中训练迭代次数理解【源码阅读技巧分享】【深度学习循环迭代理解】【for X, y in train_iter:】起因配置环境问题探索本文源码所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复