我是靠谱客的博主 大胆煎饼,最近开发中收集的这篇文章主要介绍离散数学 第十四章 代数系统,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

目录

14.1 二元运算及其性质

14.2 代数系统的定义与特异元

14.2.1 代数系统

14.2.2 特异元

14.2.3 半群和含幺半群


14.1 二元运算及其性质

定义:设S是一个非空集合,映射(或函数)称为S上的n元代数运算—>n元运算

运算性质

#定义:设“·”是一个S上的二元代数运算

        ①封闭性:

        ②交换律:

        ③结合性:

        ④幂等的:

#定义:设是集合S上的两个二元运算,对

 ①关于在S上是可分配的——>且

 ②与满足吸收律——>,是可换运算,且

14.2 代数系统的定义与特异元

14.2.1 代数系统

#定义:设S是一个非空集合,f1,f2,..,fm分别是定义在S上的运算,称集合S和f1,f2,..,fm所组成的系统称为一个代数系统。

判断条件:

        ①集合S非空

        ②运算关于S满足封闭性

14.2.2 特异元

#定义:设是集合S上的二元运算,是一个代数系统

        ①单位元(幺元):都有:

        ②零元:都有:

        ③幂等元:

#定义:设是集合S上的二元运算,是一个代数系统,e是的幺元,若对,则称b是a的逆元。

                                  

注:不是每个元都是可逆的

特异元的性质

定理:设是一个代数系统

1)若存在幺元,则该幺元唯一

 2)若存在零元,则该零元唯一

 3)若满足结合律且e是的幺元,则对,若a存在逆元,则该逆元唯一

14.2.3 半群和含幺半群

#定义:设是一个二元代数系统:

1)当是封闭的,称为广群

2)封闭+可结合——>半群

3)封闭+可结合+幺元e——>含幺半群

4)封闭+可结合+幺元e+每个元素都有逆元——>

最后

以上就是大胆煎饼为你收集整理的离散数学 第十四章 代数系统的全部内容,希望文章能够帮你解决离散数学 第十四章 代数系统所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(51)

评论列表共有 0 条评论

立即
投稿
返回
顶部