概述
6.3 LSTM的记忆能力实验
使用LSTM模型重新进行数字求和实验,验证LSTM模型的长程依赖能力。
6.3.1 模型构建
使用第6.1.2.4节中定义Model_RNN4SeqClass模型,并构建 LSTM 算子.
只需要实例化 LSTM ,并传入Model_RNN4SeqClass模型,就可以用 LSTM 进行数字求和实验。
6.3.1.1 LSTM层
自定义LSTM算子
nn.LSTM
相较于简单的RNNcell,LSTMcell有着更为复杂的结构,包括三个门,一个记忆单元,根据LSTM的结构,现定义LSTMcell类,代替之前的RNNcell类。
class LSTMCell(nn.Module):
def __init__(self, input_size, hidden_size, bias=True):
super(LSTMCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.x2h = nn.Linear(input_size, hidden_size, bias=bias)
self.h2h = nn.Linear(hidden_size, hidden_size, bias=bias)
self.reset_parameters()
def reset_parameters(self):
std = 1.0 / math.sqrt(self.hidden_size)
for w in self.parameters():
w.data.uniform_(-std, std)
def forward(self, x, hidden):
hx=hidden
cx = hidden
gates = self.x2h(x) + self.h2h(hx)
gates = gates.squeeze()
ingate = torch.sigmoid(gates)
forgetgate = torch.sigmoid(gates)
cellgate = torch.tanh(gates)
outgate = torch.sigmoid(gates)
cy = torch.mul(cx, forgetgate) + torch.mul(ingate, cellgate)
hy = torch.mul(outgate, torch.tanh(cy))
return (hy, cy)
将自定义LSTM与pytorch内置的LSTM进行对比
自定义LSTM:
class number_Sum_model(torch.nn.Module):
def __init__(self,input_size, hidden_size,seq_len):
super(number_Sum_model, self).__init__()
self.linear=torch.nn.Linear(hidden_size,19)
self.sigmoid=torch.nn.Sigmoid()
self.input_size=input_size
self.norm_in=torch.nn.BatchNorm1d(input_size)
self.norm_h = torch.nn.BatchNorm1d(hidden_size)
self.seq_len=seq_len
self.lstm=LSTMCell(input_size=input_size, hidden_size=hidden_size)
def forward(self,X):
#print('---------input--------')
#print(X)
num=0
for i in range(self.seq_len):
x_in=X[i,:]
#print('------num %4d in seq:------'%num)
#print(x_in)
num+=1
if i==0:
c0=torch.randn(size=x_in.shape)
h1,c1 = self.lstm.forward(x_in,c0)
else:
h1,c1=self.lstm.forward(x_in,c1)
outh=self.linear(h1)
return outh
6.3.2 模型训练
训练过程与基本的网络训练过程没什么区别,代码如下:
def train():
net =number_Sum_model(input_size=10,hidden_size=10,seq_len=seq_len)
epoches=1000
running_loss=0
loss_list=[]
t_loss_list=[]
optim = torch.optim.Adam(net.parameters(), lr=0.001)
loss = torch.nn.CrossEntropyLoss()
for epoch in range(epoches):
epoch_loss=0
for x,t in zip(train_X,target):
out = net.forward(x)
#print('------target------')
#print(t)
l=loss(out,t)
l.backward()
optim.step()
optim.zero_grad()
running_loss+=l
epoch_loss+=l.detach().numpy()
loss_list.append(epoch_loss)
test_loss=0
for x,t,in zip(test_X,test_target):
out=net.forward(x)
t_loss=loss(out,t)
test_loss+=t_loss.detach().numpy()
t_loss_list.append(test_loss)
if epoch %100 == 0:
print('===============epoch=%5d===================' % (epoch))
print('----------------current output:-----------------')
print(out.shape)
print('[train] [epoch:%4d/%4d] current loss: %.8f,current epoch loss:%.8f,total loss:%.8f'
% (epoch + 1, epoches, l.item(),epoch_loss, running_loss))
print('[test] accuracy in train data:%.8f %%'%(test(net, train_X, target)*100))
print('[test] accuracy in test data:%.8f %%' % (test(net, test_X, test_target) * 100))
6.3.2.1 训练指定长度的数字预测模型
一共有6种序列长度,对应SRN训练,有5,10,15,20,25,30共6种。数据集的生成部分和处理部分参见SRN长程记忆实验部分。
主要用到的函数:
处理输入数据,进行独热编码并转换成tensor
def set_data(X):
o_X=[]
for x in X:
target_list = []
for target in x:
if target == 0:
target_list.append(torch.Tensor([1, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
elif target == 1:
target_list.append(torch.Tensor([0, 1, 0, 0, 0, 0, 0, 0, 0, 0]))
elif target == 2:
target_list.append(torch.Tensor([0, 0, 1, 0, 0, 0, 0, 0, 0, 0]))
elif target == 3:
target_list.append(torch.Tensor([0, 0, 0, 1, 0, 0, 0, 0, 0, 0]))
elif target == 4:
target_list.append(torch.Tensor([0, 0, 0, 0, 1, 0, 0, 0, 0, 0]))
elif target == 5:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 1, 0, 0, 0, 0]))
elif target == 6:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 1, 0, 0, 0]))
elif target == 7:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 1, 0, 0]))
elif target == 8:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 1, 0]))
elif target==9:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1]))
X_list = torch.stack(target_list)
o_X.append(X_list)
output=torch.stack(o_X)
return torch.squeeze(output)
处理输出数据,进行独热编码并转换成tensor
def set_target(X):
o_X = []
for x in X:
target_list = []
for target in x:
if target == 0:
target_list.append(torch.Tensor([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
elif target == 1:
target_list.append(torch.Tensor([0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
elif target == 2:
target_list.append(torch.Tensor([0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
elif target == 3:
target_list.append(torch.Tensor([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
elif target ==4:
target_list.append(torch.Tensor([0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
elif target == 5:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
elif target == 6:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
elif target == 7:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
elif target == 8:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
if target == 9:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
elif target == 10:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]))
elif target == 11:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]))
elif target == 12:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]))
elif target == 13:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]))
elif target == 14:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]))
elif target == 15:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]))
elif target == 16:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]))
elif target == 17:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]))
elif target==18:
target_list.append(torch.Tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]))
X_list = torch.stack(target_list)
o_X.append(X_list)
output=torch.stack(o_X)
return torch.squeeze(output)
测试网络,指标为正确率
def test(model, X, y):
T=0
for x in X:
pre_y = model(x)
max_pre_y = torch.argmax(pre_y, dim=0)
max_y = torch.argmax(y, dim=0)
acc=torch.nonzero(max_y.eq(max_pre_y)).shape[0]
T+=acc
return T/target.shape[0]
随机生成数据集
def get_data(seq_len):
outx=[]
outy=[]
for i in range(10):
for j in range(10):
tmp=[i,j]+random_num(seq_len-2)
outx.append(tmp)
outy.append(i+j)
return outx,outy
def random_num(num):
list=[]
for i in range(num):
pool=[i for i in range(10)]+[0]*90
list.append(random.choice(pool))
return list
6.3.2.3 损失曲线展示
采用边训练边绘制的方法,最后一并输出。
print('-------------------training ended.----------------')
print('-------------------test---------------------')
plt.subplot(2,3,i+1)
plt.plot(range(epoches),loss_list,label='loss in train data')
plt.plot(range(epoches),t_loss_list,label='loss in test data')
plt.legend()
plt.xlabel('epoches')
plt.ylabel('loss')
plt.title('seq_lenth={}'.format(seq_len))
plt.show()
6.3.3 模型评价
6.3.3.1 在测试集上进行模型评价
【思考题1】LSTM与SRN实验结果对比,谈谈看法。(选做)
对比SRN’(将隐藏层数降低到了10)的结果
可以看到,LSTM的损失要明显低于SRN,虽然效果没有那么神奇,但很明显在前几次都是LSTM占优的,后几个也是损失要低于SRN的,而且LSTM只运行了500次,运行多了的话会内存满了然后终止训练。
相较于SRN的简单cell模型,LSTMcell添加了三个门和一个状态单元,拥有更加复杂多变的网络结构,而且还添加了一条总线,增加了模型的长程记忆能力,这也是为什么LSTM能够更好的分类较长干扰序列的主要原因。
为了便于观察,还是按照邱老师的这个结果作为对比:
这个就非常具有代表性;他的长序列分类在测试集上的损失就明显要比SRN的要低 ,它几乎是贴近在训练集上的损失的。
由于LSTMcell本身就设计的很复杂,导致这也很难说清楚它到底是怎样实现的,大体上,就是通过遗忘门将干扰序列给遗忘掉了,或者说是将原来的记忆用新的记忆冲刷掉了,这个过程通过一次逻辑运算实现;输入门决定是否将信息输入到长程状态记忆中,状态单元则是储存了当前的状态,两者的卷积实际上像是挑选出了有用的东西加到总线上;最后的输出门则是利用上了总线上的信息,对输入进行处理并输出,这时候的总线已经包含了输入的很多信息(因为已经经过了两次处理,一次遗忘门,一次状态输入),同时又包含了总线上的之前信息,就这样在此基础上,进一步增强了网络对长程信息记忆的能力。网络越长,优势就越明显。
(纯属个人理解,如有错误请多指出。)
【思考题2】LSTM与SRN在不同长度数据集上的准确度对比,谈谈看法。(选做)
6.3.3.3 LSTM模型门状态和单元状态的变化
【思考题3】分析LSTM中单元状态和门数值的变化图,并用自己的话解释该图。
输入门需要与单元状态进行一次相关运算,它的值决定了状态门的某些是否需要输入到长程总线中,从而对主线进行调整
遗忘门决定是否对总线信息进行冲洗,热力图中的和总线上面的值差别越大,总线信息被冲洗的越厉害,可以看到随着迭代次数增加,他的值是区域稳定的。
输出门会与总线进行一次相关运算,将总线信息(它包含的经验)利用上,从而输出下一个隐藏状态的值,随着迭代层数的增加,网络的输出值也是趋于稳定的。
经过一次tanh,降至约束到了大约-5~5之间,它是当前的状态,也就是候选记忆的存储位置,他会与输入门进行一次相关运算,被挑选出有用的信息加入长程总线之中。
LSTM有一个长期总线和一个短期记忆单元,所以被称为长短期网络模型,实际上,他的短期记忆功能似乎也体现于他的隐状态之中,因为它里面也存储了短期的网络信息。
全面总结RNN(必做)
最后
以上就是执着菠萝为你收集整理的NNDL 实验七 循环神经网络(3)LSTM的记忆能力实验6.3 LSTM的记忆能力实验全面总结RNN(必做)的全部内容,希望文章能够帮你解决NNDL 实验七 循环神经网络(3)LSTM的记忆能力实验6.3 LSTM的记忆能力实验全面总结RNN(必做)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复