我是靠谱客的博主 快乐斑马,最近开发中收集的这篇文章主要介绍频分复用(Frequency Division Multiplexer),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

作者:桂。

时间:2017年12月19日20:43:04 

链接:http://www.cnblogs.com/xingshansi/p/8067839.html 


前言

主要记录基本的频分复用原理,以及仿真实现。

一、频分复用原理

频分复用FDM:

通常x1..4(t)可以是同一个序列的串并转化,也可以是不同序列,频分复用示意图:

主要包含三个操作:1)上采样(up-sample); 2)滤波(fir);3)累加(sum)。

频分复用:将多个不同频段的信号拼接为一个宽带信号,主要包含三个操作:1)上采样(up-sample); 2)滤波(fir;3)累加(sum)

  • 上采样

T1/T2 = 4,故上采样倍数为4,上采样有原数据保持、插值、补零等方法,这里采用最基本的补零方法。不失一般性,X0(n)X1(n)X2(n)X3(n)分别按不同频率的正弦信号处理。

x1(n) 的频域变换: 

4倍插值后的频谱:

 

可以看出插值后出现了多个重复周期,因此需要借助低通滤波以保留单一周期,如下图所示:

因此需要构造不同频段的滤波器,四个蓝色阴影部分拼接(累加)即可。

  • 滤波器

这里prototype滤波器: 

共构造8个滤波器,分成四组,输出y(n)为:

Y(n) = y0(n)+ y1(n)+ y2(n)+ y3(n)

ym(n)

Ym(n) = xm_interpl(n)*[ha (n) exp((-im*2*pi*(m*n))/8)+ ha(n) exp((-im*2*pi*((8-m)*n))/8)]

= 2*xm_interpl(n)*[ha(n)cos((-2*pi*(m*n))/8)]

其中ha (n) = h(n)* exp((-im*pi*n)/8)prototype filter,至此便完成了信号的频分多路复用(FDM)理论推导.

  • 累加

滤波后的各个输出累加,即得到调制的y(n),仿真图如图所示:

结果与上文一致。

二、仿真结果

频分复用的接收端是发射的逆过程,分别利用 基本滤波器、多相滤波器实现:

基本滤波器:

%recovery signal: x
clc;clear all;close all;
load fir2.mat;
fir = fir2;
B = 4000;%4KHz
fs1 = 2*B;
D = 4;
t1 = 0:1/fs1:(128-1)/fs1;
f = [800 1600 2200 2800];%frequency
x0 = sin(2*pi*t1*f(1));
x1 = sin(2*pi*t1*f(2));
x2 = sin(2*pi*t1*f(3));
x3 = sin(2*pi*t1*f(4));
x_shape = [x0;x1;x2;x3];
%% interp
x0_interp = [x0;zeros(3,length(t1))];
x0_interp = x0_interp(:)';
x1_interp = [x1;zeros(3,length(t1))];
x1_interp = x1_interp(:)';
x2_interp = [x2;zeros(3,length(t1))];
x2_interp = x2_interp(:)';
x3_interp = [x3;zeros(3,length(t1))];
x3_interp = x3_interp(:)';
%%prototype filter
x_all = [x0_interp;x1_interp;x2_interp;x3_interp;flipud([x0_interp;x1_interp;x2_interp;x3_interp])];
im = sqrt(-1);
iseq = 1:length(fir);
for j = 1:D
        h_channel(j,:) = fir.*cos((2*pi*((j-1/2)*(iseq-1)))/8);
%     h_channel(j,:) = fir.*exp((1j*2*pi*((j-1/2)*(iseq-1)))/8);
end
%%add signal
yn = zeros(1,length(x3_interp));
for i = 1:D
    yn = filter(h_channel(i,:),1,x_all(i,:))+yn;
end
%%demultiplex
x_channel = zeros(D,length(yn)/D);
for i = 1:D
    x_channel(i,:) = downsample(filter(h_channel(i,:),1,yn),D);
end
figure()
for i = 1:D
    subplot(2,2,i)
    plot(linspace(0,fs1,length(t1)),abs(fft(x_channel(i,:))));
    xlabel('frequency(Hz)');ylabel('amplitude');title('direct filter -> x');
end

%%plot mse
figure()
for i = 1:4
     x_channel(i,:) =  x_channel(i,:)/max(abs( x_channel(i,:)));
     subplot (2,2,i)
     plot(linspace(0,fs1,length(t1)),x_channel(i,:));hold on;
     plot(linspace(0,fs1,length(t1)),x_shape(i,:),'r--');hold on;
%      plot(linspace(0,fs1,length(t1)),abs(x_shape(i,:)-x_channel(i,:)).^2,'k');
     xlabel('frequency(Hz)');title('MSE');
%      legend('recovery','orignal','MSE');
end

  多相滤波器,推导:

令l = iD+p,D表示分解后信号路数,此处D = 4:

再将结果取实部即可得解。 

%recovery signal by polyphase filter: x
clc;clear all;close all;
load fir2.mat;
fir = fir2;
B = 4000;%4KHz
fs1 = 2*B;
D = 4;
t1 = 0:1/fs1:(128-1)/fs1;
f = [800 1600 2200 2800];%frequency
x0 = sin(2*pi*t1*f(1));
x1 = sin(2*pi*t1*f(2));
x2 = sin(2*pi*t1*f(3));
x3 = sin(2*pi*t1*f(4));
x_shape = [x0;x1;x2;x3];
%% interp
x0_interp = [x0;zeros(3,length(t1))];
x0_interp = x0_interp(:)';
x1_interp = [x1;zeros(3,length(t1))];
x1_interp = x1_interp(:)';
x2_interp = [x2;zeros(3,length(t1))];
x2_interp = x2_interp(:)';
x3_interp = [x3;zeros(3,length(t1))];
x3_interp = x3_interp(:)';
%%prototype filter
x_all = [x0_interp;x1_interp;x2_interp;x3_interp;flipud([x0_interp;x1_interp;x2_interp;x3_interp])];
im = sqrt(-1);
iseq = 1:length(fir);
for j = 1:D
        h_channel(j,:) = fir.*cos((-2*pi*((j-1/2)*(iseq-1)))/8);
%     h_channel(j,:) = fir.*exp((1j*2*pi*((j-1/2)*(iseq-1)))/8);
end
%%add signal
yn = zeros(1,length(x3_interp));
for i = 1:D
    yn = filter(h_channel(i,:),1,x_all(i,:))+yn;
end
%%demultiplex
%prototype filter
h0 = fir.*exp((-1j*2*pi*((-1/2)*(iseq-1)))/8);
h_py = fliplr(reshape(h0,D,length(h0)/D));
y_py = (reshape(yn,D,length(yn)/D));
x_channel = zeros(D,length(yn)/D);
for i = 1:D
    x_channel(i,:) = filter(h_py(i,:),1,y_py(i,:));
end
x_channel = real(ifft(x_channel));
x_channel = x_channel([1,4,2,3],:);
%%plot mse
figure()
for i = 1:4
     x_channel(i,:) =  x_channel(i,:)/max(abs( x_channel(i,:)));
     subplot (2,2,i)
     plot(linspace(0,fs1,length(t1)),x_channel(i,:));hold on;
     plot(linspace(0,fs1,length(t1)),x_shape(i,:),'r--');hold on;
%      plot(linspace(0,fs1,length(t1)),abs(x_shape(i,:)-x_channel(i,:)).^2,'k');
     xlabel('frequency(Hz)');title('MSE');
%      legend('recovery','orignal','MSE');
end

三、其他

 原型滤波器信道化思路:

信道化与频分复用略有不同,频分复用主要是余弦函数,理论上相邻无衰减,得到的余弦曲线并不理想:

当有一定的过渡带时,余弦曲线:

 可见此时应该有一个过渡带才更加合理,而不是像信道化体系常用的约束:相邻信道无缝连接。

最后

以上就是快乐斑马为你收集整理的频分复用(Frequency Division Multiplexer)的全部内容,希望文章能够帮你解决频分复用(Frequency Division Multiplexer)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(31)

评论列表共有 0 条评论

立即
投稿
返回
顶部