概述
jiffies 的使用
每一个技术点都是要靠自己对着书来一步步实践
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/uaccess.h> /* copy_*_user */
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/jiffies.h>
static void __exit hello_exit(void)
{
printk("%dn", jiffies);
return;
}
static int __init hello_init(void)
{
dev_t dev = 0;
return 0;
}
module_init(hello_init);
module_exit(hello_exit);
调用dmesg查看结果,注意这里获取都是32位的
[ 1724.354757] 355881
[ 1751.993783] 362791
[ 1753.189108] 363090
[ 1754.108915] 363320
下面我继续看64位的获取方法
get_jiffies_64();
输出的结果是:
[ 591.756554] timer:4295039905
防止溢出的回环处理函数
#include <linux/jiffies.h>
int time_after(unsigned long a, unsigned long b);
int time_before(unsigned long a, unsigned long b);
int time_after_eq(unsigned long a, unsigned long b);
int time_before_eq(unsigned long a, unsigned long b);
jiffies 和 timeval 以及 timespace 的转化,timeval使用的是秒和毫秒,timespace使用的是秒和纳秒,内核提供了4个辅助函数
struct timespec {
__kernel_time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
};
#endif
struct timeval {
__kernel_time_t tv_sec; /* seconds */
__kernel_suseconds_t tv_usec; /* microseconds */
};
书上写的 jiffiestotimeval 好像不能用了,然后我看到编译的细节是头文件的目录在/usr/src/linux-headers-5.8.0-44-generic/include/linux/time.h ,linux 内核5.8以后没有这个了,所以我看了下头文件内容
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_TIME_H
#define _LINUX_TIME_H
# include <linux/cache.h>
# include <linux/seqlock.h>
# include <linux/math64.h>
# include <linux/time64.h>
extern struct timezone sys_tz;
int get_timespec64(struct timespec64 *ts,
const struct __kernel_timespec __user *uts);
int put_timespec64(const struct timespec64 *ts,
struct __kernel_timespec __user *uts);
int get_itimerspec64(struct itimerspec64 *it,
const struct __kernel_itimerspec __user *uit);
int put_itimerspec64(const struct itimerspec64 *it,
struct __kernel_itimerspec __user *uit);
extern time64_t mktime64(const unsigned int year, const unsigned int mon,
const unsigned int day, const unsigned int hour,
const unsigned int min, const unsigned int sec);
/* Some architectures do not supply their own clocksource.
* This is mainly the case in architectures that get their
* inter-tick times by reading the counter on their interval
* timer. Since these timers wrap every tick, they're not really
* useful as clocksources. Wrapping them to act like one is possible
* but not very efficient. So we provide a callout these arches
* can implement for use with the jiffies clocksource to provide
* finer then tick granular time.
*/
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
extern u32 (*arch_gettimeoffset)(void);
#endif
#ifdef CONFIG_POSIX_TIMERS
extern void clear_itimer(void);
#else
static inline void clear_itimer(void) {}
#endif
extern long do_utimes(int dfd, const char __user *filename, struct timespec64 *times, int flags);
/*
* Similar to the struct tm in userspace <time.h>, but it needs to be here so
* that the kernel source is self contained.
*/
struct tm {
/*
* the number of seconds after the minute, normally in the range
* 0 to 59, but can be up to 60 to allow for leap seconds
*/
int tm_sec;
/* the number of minutes after the hour, in the range 0 to 59*/
int tm_min;
/* the number of hours past midnight, in the range 0 to 23 */
int tm_hour;
/* the day of the month, in the range 1 to 31 */
int tm_mday;
/* the number of months since January, in the range 0 to 11 */
int tm_mon;
/* the number of years since 1900 */
long tm_year;
/* the number of days since Sunday, in the range 0 to 6 */
int tm_wday;
/* the number of days since January 1, in the range 0 to 365 */
int tm_yday;
};
void time64_to_tm(time64_t totalsecs, int offset, struct tm *result);
# include <linux/time32.h>
static inline bool itimerspec64_valid(const struct itimerspec64 *its)
{
if (!timespec64_valid(&(its->it_interval)) ||
!timespec64_valid(&(its->it_value)))
return false;
return true;
}
/**
* time_after32 - compare two 32-bit relative times
* @a: the time which may be after @b
* @b: the time which may be before @a
*
* time_after32(a, b) returns true if the time @a is after time @b.
* time_before32(b, a) returns true if the time @b is before time @a.
*
* Similar to time_after(), compare two 32-bit timestamps for relative
* times. This is useful for comparing 32-bit seconds values that can't
* be converted to 64-bit values (e.g. due to disk format or wire protocol
* issues) when it is known that the times are less than 68 years apart.
*/
#define time_after32(a, b) ((s32)((u32)(b) - (u32)(a)) < 0)
#define time_before32(b, a) time_after32(a, b)
/**
* time_between32 - check if a 32-bit timestamp is within a given time range
* @t: the time which may be within [l,h]
* @l: the lower bound of the range
* @h: the higher bound of the range
*
* time_before32(t, l, h) returns true if @l <= @t <= @h. All operands are
* treated as 32-bit integers.
*
* Equivalent to !(time_before32(@t, @l) || time_after32(@t, @h)).
*/
#define time_between32(t, l, h) ((u32)(h) - (u32)(l) >= (u32)(t) - (u32)(l))
# include <vdso/time.h>
#endif
处理特定寄存器
很多场景我们需要很高的精度,而又忽略可移植性的不可预测。
为了解决这一个问题cpu通过计算时钟周期而度量时间差的简单可靠做法。绝大多数都包含一个随着时钟周期而不断递增的计数寄存器,这个时钟计数器是完成分辨率计时任务的唯一可靠途径。
无论这个计数寄存器是否为0我们都不应该去重置他
最有名气的寄存器是时间戳计数器(TSC)。
包含头文件
两个重要的函数
rdtsc(low32, high32)
rdtscl(low32);
rdtscll(var64);
在内核头文件中还有一个与体系结构无关的函数可以替代rdtsc 多数时候用低32就够了,但是1-GHZ的处理器,每4.2秒就会溢出,因此所有平台都平台提供了
#include <linux/timex.h>
cycles_t get_cycloes(void);
static int __init hello_init(void)
{
printk("timer:%lldn",get_cycles());
return 0;
}
结果:
[ 591.756554] timer:4295039905
[11211.385908] timer:26952505672285
获取当前执行时间
最后
以上就是鲤鱼钥匙为你收集整理的jiffies 的使用jiffies 的使用处理特定寄存器获取当前执行时间的全部内容,希望文章能够帮你解决jiffies 的使用jiffies 的使用处理特定寄存器获取当前执行时间所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复