我是靠谱客的博主 潇洒画笔,最近开发中收集的这篇文章主要介绍特斯拉自动驾驶持续优化的底层逻辑,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

        特斯拉内部数据离线自动标注(Data Auto Labeling)以及自动训练框架“数据引擎(Data Engine)。

        首先,特斯拉神经网络团队在对这些长尾情况有所了解后,会先编成一个样本数据集,并为此创造一个局部小型神经网络来学习、训练(与其他神经网络并行),通过OTA方式部署到全球英语地区特斯拉车辆上。

        再利用车辆影子模式,但凡遇到实际驾驶情况和自动驾驶AI决策不一致的情况,这部分行车数据会自动上传至特斯拉后台数据引擎中,在被自动标注后,重新纳入已有的数据训练集中,继续训练原本的神经网络,直到新的数据被掌握。

        就这样,在大量训练数据的喂养下,神经网络变得“见多识广”、更加聪明,可以识别不同条件状况下的STOP标识,精确度逐渐从40%提升至99%,完成单一任务学习。

        不过,这仅仅是学习一个静态的信号,在汽车驾驶过程中会涌现无数静态和动态的信号,静态如路边大树、路障、电线杆等,动态的有行人、车辆等,而这些信号由摄像机捕捉到后交由神经网络训练、学习。目前特斯拉的自动驾驶神经网络已发展出九大主干神经(HydraNet)和48个神经网络,识别超过1000种目标。

        直到特斯拉视觉算法在预测物体的深度、速度、加速度的表现,达到可替代毫米波雷达的水平,特斯拉的视觉算法才算真正独立。

        不仅如此,纯视觉算法还可以在雾、烟、尘等环境里保持对前方车辆的测速、测距工作,如此一来拿掉毫米波雷达也不奇怪了。根据特斯拉AI Day上最新发布的信息,目前特斯拉每周能够获得一万个人们恶劣环境

最后

以上就是潇洒画笔为你收集整理的特斯拉自动驾驶持续优化的底层逻辑的全部内容,希望文章能够帮你解决特斯拉自动驾驶持续优化的底层逻辑所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(67)

评论列表共有 0 条评论

立即
投稿
返回
顶部