概述
通俗讲,机器学习就是“(计算机)无需显式编程即可学习的能力”。跨海量数据集应用数学技术机器学习算法可建立起行为模型,并基于新输入的数据,用这些模型做出对未来的预测。视频网站根据用户的历史观看记录推出新剧集,自动驾驶汽车从擦肩而过的行人学习路况,都是机器学习的例子。
机器学习在安全领域的顶级用例有哪些呢?我们不妨来看看以下5个。
1. 用机器学习检测恶意活动并阻止攻击
机器学习算法可帮助公司企业更快速检测恶意活动,并在攻击开始前就予以阻止。英国初创公司Darktrace于2013年成立,其基于机器学习的企业免疫解决方案( Enterprise Immune Solution ),在这方面已取得了很多成功。作为这家公司的技术总监,大卫·帕尔玛见证了机器学习对恶意活动及攻击的影响。
帕尔玛称,利用机器学习算法,Darktrace最近帮助北美一家赌场检测出了数据泄露攻击。该攻击将联网鱼缸用作了进入赌场网络的切入点。该公司还宣称,去年夏天的WannaCry勒索软件大肆虐中,其算法也防止了类似的一起攻击。
针对感染了150个国家20多万受害者的WannaCry勒索软件,帕尔玛称:“在数秒内,我们的算法就检测出了一家国民医疗服务(NHS)机构网络中的攻击,在尚未对该机构造成任何破坏前,此威胁就被缓解掉了。事实上,我们的客户没有任何一家受到WannaCry攻击的伤害,包括那些没打补丁的。”
2. 用机器学习分析移动终端
移动设备上,机器学习已成主流;但到目前为止,绝大部分活动集中在驱动基于语音的体验上,比如 Google Now、苹果的Siri和亚马逊的Alexa。不过,机器学习在安全方面确实有应用。如上文提及的,谷歌采用机器学习来分析移动终端威胁,而企业则在防护自带及自选移动设备上看到了机会。
10月,MobileIron和Zimperium宣布合作,帮助企业将机器学习集成进移动杀软解决方案中。MobileIron将在自己的安全及合规引擎中,集成Zimperium基于机器学习的威胁检测,并作为联合解决方案售出,解决设备、网络及应用威胁检测,快速自动化动作防护公司数据之类的难题。
其他供应商也在计划改善自己的移动解决方案。LookOut、被赛门铁克收购的Skycure,还有Wandera,是移动威胁检测及防御市场中的佼佼者,每家都用自有机器学习算法检测潜在威胁。拿Wandera举个例子。这家公司最近刚公开发布了其威胁检测引擎 MI:RIAM,据称检测出了超过400种针对企业移动设备的SLocker勒索软件变种。
3. 用机器学习增强人类分析
机器学习在安全领域的核心应用,有人认为是帮助人类分析师处理安全方面的各项工作,包括恶意攻击检测、网络分析、终端防护及漏洞评估。但在威胁情报方面,才是最令人兴奋的。
比如说,2016年,麻省理工学院计算机科学和人工智能实验室(CSAIL),开发出了名AI2的系统。这是一个自适应机器学习安全平台,可帮助分析师从海量数据中找出真正有用的东西。该系统每天审查数百万登录,过滤数据,并将滤出内容传给人类分析师,可将警报数量大幅降低至每天100个左右。由CSAIL和初创公司PatternEx共同进行的实验表明,攻击检测率被提升到了85%,而误报率降低至原先的1/5。
4. 用机器学习自动化重复性安全工作
机器学习的真正价值,在于可以自动化重复性劳动,让员工可以专注在更重要的工作上。帕尔玛称,机器学习最终应旨在“消除重复性低价值决策活动对人力的需求”上,比如归类威胁情报等活动。让机器处理重复性工作和阻止勒索软件之类战术性救火工作,这样人类就能解放双手去搞定战略性问题了,比如现代化 Windows XP 系统等等。
博思艾伦咨询公司也在走这个路线。据报道,该公司用AI工具更高效地分配人类安全资源,分类威胁,让员工可以专注最关键的攻击。
5. 用机器学习堵上零日漏洞
有人认为,机器学习有助堵上漏洞,尤其是零日威胁和主要针对不安全IoT设备的那些威胁。该领域里已出现了先驱者:《福布斯》报道,亚利桑那州立大学的一支团队,采用机器学习监视暗网流量,以识别与零日漏洞利用相关的数据。有了此类洞见的加持,公司企业就可堵上漏洞,在漏洞造成数据泄露前就断掉漏洞利用的机会。
炒作和误解
然而,机器学习并非万灵丹,至少对一个仍在对这些技术进行概念验证实验的行业来说不是。前路艰难,困难与隐患从来不少。机器学习系统有时候会有误报(无监督学习系统的算法会基于数据推测类型),而有分析师也坦率承认,用在安全领域的机器学习可能是“黑箱”解决方案——CISO不能完全确定其内部机制。他们只能将自己的信任与责任放到供应商及机器身上。
在某些安全解决方案可能压根儿没用机器学习,盲目的信任可不是什么好主意。
市面上炒作的机器学习产品,大多数都不会在客户环境中真正学习。它们不过是在供应商自己的云上,用恶意软件样本训练出模型,再下载到客户公司,就跟病毒特征码似的。对客户安全来说,这可不是什么进步,基本上是在倒退。
而且,算法投入实际使用前学习模型所需的训练数据样本,也有糟糕数据和实现会产出更糟糕结果的问题。机器学习的效果,取决于你输入的信息。垃圾进,垃圾出。所以,如果你的机器学习算法设计不佳,结果也就不会太有用。算法在实验室训练数据上有用是一回事,但最大的挑战,还在于让机器学习网络防御在现实复杂网络中起效。
最后
以上就是饱满鼠标为你收集整理的机器学习作用于信息安全的五大顶级案例的全部内容,希望文章能够帮你解决机器学习作用于信息安全的五大顶级案例所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复