我是靠谱客的博主 舒适刺猬,最近开发中收集的这篇文章主要介绍机器学习中optimization问题 Convergence rate optimization算法分析,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述


Convergence rate


  • 虽然optimization问题多用于基础研究,工程使用时有多种python库可供调用,但是了解其原理,一是有助于更好的选择optimization function,二是costumize自己的optimiation function(竞赛中常常用到)。
  • 课程涉及大量推导,此处不分享相关slide.
  • 首先看一下这篇https://zhuanlan.zhihu.com/p/27644403 ,对Convergence rate有一个大概的理解。
  • 在发表optimization方向的论文时,需要尤其注意自己的模型属于哪种Convergence rate,并分析其表现: **_time and iteration count_**。
  • 重点:Convergence rate only tells you how close each iteration gets to the best solution, however, it doesn't tell you how costly(timewise) each iteration is.**_ 解释一下就是,虽然有的optimization算法他Convergence rate很优秀,即可以几步就收敛到最优解,但是他每一次iteration的cost非常大,比如遍历整个数据集,或计算时间很长等,这就是trade-off,工程实现是需仔细考虑。

三种Convergence rate

  • Convergence rate:Sublinear < Linear < Quadratic (考)

  • Sublinear:SGD (takes the amount of computations comparable with the total amount of the previous work.)

(k是迭代次数,r_{k}是k次迭代的risk值,Sublinear形式的特征是k^{n}在分母)

> Linear: GD  (each new right digit of the answer takes a constant amount of computations)

(Linear形式是k在指数)

> Quadratic: 牛顿  (each iteration doubles the number of right digits in the answer,but expensive)

   (Quadratic形式)

(大家都用过的例子:SGD快,但是收敛效果不一定好,GD慢,但是遍历整个数据集,收敛效果好)
例如:你只是一个theoretician,不关心运行时间,你应该选择牛顿optimization,如果你是一个practitioner ,你应该选择DG或SGD。


optimization算法分析


 (GD,SGD属于first order minimization,只保证收敛到stationary point, 而不保证收敛到local minima。)

GD----Linear convergence,以GD为例,讲解如何进行更好的optimization。

 

  • 先我们希望需要去优化的loss function是strong convex并且smooth的(特别重要),基于这两个条件,可以证明GD算法属于linear convergence(证明见ppt19-21).(如果GD不可导,则需要使用subgradient代替gradient,此时推导过程基本不变)
  • 如果只进行convex假设而不是strong convex,则GD的convergence rate只能退化成sublinear convergence rate,即正比于(1/t).

下面介绍如果并不满足strong convex假设,如何accelerate GD算法: Nesterov's Accelerated GD

 

  • 思想: 每迈出一步,这一步的方向不光是当前的梯度方向,还要加一部分上一步得到的梯度。
  • algorithm:(ppt-26)

Step1: 

Step2: init:

Step3:

(第一行和GD完全一样,第二行加入了上一次的direction)

  • torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)中使用这个参数,即在发现optimization funcction的convex性不是很好时将nesterov=False置为true,可得到1/t^2的convergence rate,虽然也是sublinear,但是比不加好很多。
  • 源码阅读
  • 如果从另一种证明方法得知,convergence rate反比与objective function的hessian矩阵的condition number,即smooth/convex。(strong vonvex:Q,convex: 根号Q),Q越小,收敛越快。)

(各大library不太会使用GD做优化器,但是GD方便手写,且是基础中的基础,和SGD是相同的,上面的方法在SGD中就用的很多了)

SGD----Sublinear

  • 证明略。
  • 如果objective function是strong convex的,convergence rate可证明:正比于log(t)。

因为strong convex代表了slope更加steep,自然下降的更快。

(注意,GD的的步长一般认为是固定值(也有变化的),但是SGD的步长一般认为是变化的,到后面越来越慢,其中B是参数w的外界left | w right |leq brho是当前vector的外界)。

  • 步长: theoreticians 只证明SGD收敛可行,practitioners需要真正实现他,所以各个不同的Library都有自己的步长自适应算法,例如torch采用的Adagrad,RMSprop等,try to make two communities more agree with each other.

Newton method

虽然convergence rate很好,但是每次迭代expensive,因为要计算hessian矩阵的逆。

Quasi-Newton methods

因为first order的算法虽然convergence rate不太优秀,但是一次iteration计算资源消费较少,牛顿法则相反。所以提出了拟牛顿法这种改进。super-linear

首先,first order算法的迭代更新是

它满足approximation of the function f (x):(f(x)的一阶泰勒展开)

这个方程求极小值。(对他求一阶导,使一阶导为0)

同样,Newton methods迭代规则是:

它满足approximation of the function f (x):(二阶泰勒展开)

求极小值。

所以:Can we construct better approximations that φ1(x), but less expensive than φ2(x)?

它就是

于是,f''(x)被替换成了G。

算法是:(H就是G-1)

如何更新H呢:

  • BFGS

但是这样就会每次要存储一个n*n的矩阵,是昂贵的。

  • LBFGS(减小存储空间)

于是,只要存V这个矩阵就行了,前k个特征值被记录在S中。

sum-1的计算也给常快速:

 

最后放上使用SciPy库的代码(homework)

BFGS,LBFGS

The code was inspired by https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb

import numpy as np
import torch
import torch.nn as nn
import scipy.io as scio
from sklearn.gaussian_process import kernels
from tqdm import tqdm, trange
import scipy.stats as st
import torch
import numpy as np
from tqdm import tqdm, trange
import torch.nn.functional as F
import torch.nn as nn
from scipy.stats import logistic
import matplotlib.pyplot as plt
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from scipy.optimize import minimize
from scipy import optimize
import numpy as np
from scipy import linalg, optimize
#
The code was inspired by https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb
def phi(t):
# logistic function
idx = t > 0
out = np.empty(t.size, dtype=np.float)
out[idx] = 1. / (1 + np.exp(-t[idx]))
exp_t = np.exp(t[~idx])
out[~idx] = exp_t / (1. + exp_t)
return out
def grad_hess(w, X, y, alpha):
# gradient AND hessian of the logistic
z = X.dot(w)
z = phi(y * z)
z0 = (z - 1) * y
grad = X.T.dot(z0) + alpha * w
def Hs(s):
d = z * (1 - z)
wa = d * X.dot(s)
return X.T.dot(wa) + alpha * s
return grad, Hs
def loss(w, X, y, alpha):
# loss function to be optimized, it's the logistic loss
z = X.dot(w)
yz = y * z
idx = yz > 0
out = np.zeros_like(yz)
out[idx] = np.log(1 + np.exp(-yz[idx]))
out[~idx] = (-yz[~idx] + np.log(1 + np.exp(yz[~idx])))
out = out.sum() + .5 * alpha * w.dot(w)
return out
def gradient(w, X, y, alpha):
# gradient of the logistic loss
z = X.dot(w)
z = phi(y * z)
z0 = (z - 1) * y
grad = X.T.dot(z0) + alpha * w
return grad
c = []
H= []
loss_ = []
res = []
for i in range(3):
data = scio.loadmat("data1.mat")
tr_x = np.asarray(data["TrainingX"])
tr_y = np.asarray(data["TrainingY"])
D = np.column_stack((tr_x, tr_y))
D1 = D[0:5000, :]
np.random.shuffle(D1)
D1 = D1[0:2000, :]
D2 = D[5000:, :]
np.random.shuffle(D2)
D2 = D2[0:2000, :]
train_xx = np.row_stack((D1[:, 0:784], D2[:, 0:784]))
train_y = np.row_stack((D1[:, 784:], D2[:, 784:]))
train_y = [arr[0] for arr in train_y]
print(np.shape(train_y))
train_x = metrics.pairwise.rbf_kernel(train_xx, train_xx)
m, n = np.shape(train_x)
te_x = np.asarray(data["TestX"])
test_y = np.asarray(data["TestY"])
test_x = metrics.pairwise.rbf_kernel(te_x, train_xx)
w = np.random.random((1, n))
alpha = 1.
X = train_x
y = train_y
print('BFGS')
timings_bfgs = []
precision_bfgs = []
w0 = np.zeros(X.shape[1])
def callback(x0):
prec = linalg.norm(gradient(x0, X, y, alpha), np.inf)
precision_bfgs.append(prec)
l = loss(x0,X, y, alpha)
loss_.append(l)
ht = np.dot(test_x, x0)
ht = phi(ht)
count = 0
for i in range(np.shape(ht)[0]):
if (ht[i] > 0.5):
s = 1
else:
s = -1
if (s != test_y[i]):
count = count + 1
c.append(count / 1000.)
print(count / 1000.)
_,K= grad_hess(x0,X, y, alpha)
H.append(K)
callback(w0)
out = optimize.fmin_bfgs(loss, w0, fprime=gradient,
args=(X, y, alpha), gtol=1e-10, maxiter=100,
callback=callback)

 

 

最后

以上就是舒适刺猬为你收集整理的机器学习中optimization问题 Convergence rate optimization算法分析的全部内容,希望文章能够帮你解决机器学习中optimization问题 Convergence rate optimization算法分析所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(57)

评论列表共有 0 条评论

立即
投稿
返回
顶部