概述
文章目录
- 2022-ConvNet CVPR
- 1. 简介
- 1.1 简介
- 1.2 结论
- 2. 网络架构
- 2.1 设计方案
- 2.2 Macro design
- 2.3 ResNeXt-ify
- 2.4 Inverted Bottleneck
- 2.5 Large Kernel Sizes
- 2.6 Micro Design
- 2.7 ConvNext variants
- 3. 训练
- 4. 代码
2022-ConvNet CVPR
论文地址:https://arxiv.org/abs/2201.03545
代码地址: https://github.com/facebookresearch/ConvNeXt
感谢我的研究生导师!!!
霹雳吧啦Wz的个人空间_哔哩哔哩_bilibili
跟李沐学AI的个人空间_哔哩哔哩_bilibili
1. 简介
1.1 简介
今年(2022)一月份,Facebook AI Research和UC Berkeley一起发表了一篇文章A ConvNet for the 2020s,在文章中提出了ConvNeXt纯卷积神经网络,它对标的是2021年非常火的Swin Transformer,通过一系列实验比对,在相同的FLOPs下,ConvNeXt相比Swin Transformer拥有更快的推理速度以及更高的准确率,在ImageNet 22K上ConvNeXt-XL达到了87.8%的准确率。看来ConvNeXt的提出强行给卷积神经网络续了口命。
1.2 结论
自从ViT(Vision Transformer)
在CV领域大放异彩,越来越多的研究人员开始拥入Transformer
的怀抱。
回顾近一年,在CV领域发的文章绝大多数都是基于Transformer
的,比如2021年ICCV 的best paper Swin Transformer
而卷积神经网络已经开始慢慢淡出舞台中央。卷积神经网络要被Transformer
取代了吗?也许会在不久的将来。
今年(2022)一月份,Facebook AI Research
和UC Berkeley
一起发表了一篇文章A ConvNet for the 2020s
,在文章中提出了ConvNeXt
纯卷积神经网络,它对标的是2021年非常火的Swin Transformer
,通过一系列实验比对,在相同的FLOPs下,ConvNeXt
相比Swin Transformer
拥有更快的推理速度以及更高的准确率,在ImageNet 22K
上ConvNeXt-XL
达到了87.8%
的准确率,参看下图(原文表12)。看来ConvNeXt
的提出强行给卷积神经网络续了口命。
2. 网络架构
如果你仔细阅读了这篇文章,你会发现ConvNeXt
“毫无亮点”,ConvNeXt
使用的全部都是现有的结构和方法,没有任何结构或者方法的创新。而且源码也非常的精简,100多行代码就能搭建完成,相比Swin Transformer
简直不要太简单。
2.1 设计方案
如果你仔细阅读了这篇文章,你会发现ConvNeXt
“毫无亮点”,ConvNeXt
使用的全部都是现有的结构和方法,没有任何结构或者方法的创新。而且源码也非常的精简,100多行代码就能搭建完成,相比Swin Transformer
简直不要太简单。
- macro design
- ResNeXt
- inverted bottleneck
- large kerner size
- various layer-wise micro designs
下图(原论文图2)展现了每个方案对最终结果的影响(Imagenet 1K的准确率)。很明显最后得到的ConvNeXt
在相同FLOPs下准确率已经超过了Swin Transformer
。接下来,针对每一个实验进行解析。
2.2 Macro design
在原ResNet
网络中,一般conv4_x
(即stage3
)堆叠的block的次数是最多的。如下图中的ResNet50
中stage1
到stage4
堆叠block的次数是(3, 4, 6, 3)
比例大概是1:1:2:1
,但在Swin Transformer
中,比如Swin-T
的比例是1:1:3:1
,Swin-L
的比例是1:1:9:1
。很明显,在Swin Transformer
中,stage3
堆叠block的占比更高。所以作者就将ResNet50
中的堆叠次数由(3, 4, 6, 3)
调整成(3, 3, 9, 3)
,和Swin-T
拥有相似的FLOPs。进行调整后,准确率由78.8%
提升到了79.4%
。
在之前的卷积神经网络中,一般最初的下采样模块stem
一般都是通过一个卷积核大小为7x7
步距为2的卷积层以及一个步距为2的最大池化下采样共同组成,高和宽都下采样4倍。但在Transformer
模型中一般都是通过一个卷积核非常大且相邻窗口之间没有重叠的(即stride
等于kernel_size
)卷积层进行下采样。比如在Swin Transformer
中采用的是一个卷积核大小为4x4
步距为4的卷积层构成patchify
,同样是下采样4倍。所以作者将ResNet
中的stem
也换成了和Swin Transformer
一样的patchify
。替换后准确率从79.4%
提升到79.5%
,并且FLOPs也降低了一点。
2.3 ResNeXt-ify
接下来作者借鉴了ResNeXt
中的组卷积grouped convolution
,因为ResNeXt
相比普通的ResNet
而言在FLOPs以及accuracy之间做到了更好的平衡。而作者采用的是更激进的depthwise convolution
,即group数和通道数channel相同,这样做的另一个原因是作者认为depthwise convolution
和self-attention
中的加权求和操作很相似。
接着作者将最初的通道数由64调整成96和Swin Transformer
保持一致,最终准确率达到了80.5%
。
2.4 Inverted Bottleneck
作者认为Transformer block
中的MLP
模块非常像MobileNetV2
中的Inverted Bottleneck
模块,即两头细中间粗。
图a是ReNet
中采用的Bottleneck
模块,
b是MobileNetV2
采用的Inverted Botleneck
模块
c是ConvNeXt
采用的是Inverted Bottleneck
模块。
作者采用Inverted Bottleneck
模块后,在较小的模型上准确率由80.5%
提升到了80.6%
,在较大的模型上准确率由81.9%
提升到82.6%
。
2.5 Large Kernel Sizes
在Transformer
中一般都是对全局做self-attention
,比如Vision Transformer
。即使是Swin Transformer
也有7x7
大小的窗口。但现在主流的卷积神经网络都是采用3x3
大小的窗口,因为之前VGG
论文中说通过堆叠多个3x3
的窗口可以替代一个更大的窗口,而且现在的GPU设备针对3x3
大小的卷积核做了很多的优化,所以会更高效。接着作者做了如下两个改动:
- Moving up depthwise conv layer**,即将
depthwise conv
模块上移,原来是1x1 conv
->depthwise conv
->1x1 conv
,现在变成了depthwise conv
->1x1 conv
->1x1 conv
。这么做是因为在Transformer
中,MSA
模块是放在MLP
模块之前的,所以这里进行效仿,将depthwise conv
上移。这样改动后,准确率下降到了79.9%
,同时FLOPs也减小了。
Increasing the kernel size,接着作者将depthwise conv
的卷积核大小由3x3
改成了7x7
(和Swin Transformer
一样),当然作者也尝试了其他尺寸,包括3, 5, 7, 9, 11
发现取到7时准确率就达到了饱和。并且准确率从79.9% (3×3)
增长到 80.6% (7×7)
。
2.6 Micro Design
接下来作者在聚焦到一些更细小的差异,比如激活函数以及Normalization。
Replacing ReLU with GELU,在Transformer
中激活函数基本用的都是GELU
,而在卷积神经网络中最常用的是ReLU
,于是作者又将激活函数替换成了GELU
,替换后发现准确率没变化。
Fewer activation functions,使用更少的激活函数。在卷积神经网络中,一般会在每个卷积层或全连接后都接上一个激活函数。但在Transformer
中并不是每个模块后都跟有激活函数,比如MLP
中只有第一个全连接层后跟了GELU
激活函数。接着作者在ConvNeXt Block
中也减少激活函数的使用,如下图所示,减少后发现准确率从80.6%
增长到81.3%
。
- Fewer normalization layers,使用更少的Normalization。同样在
Transformer
中,Normalization使用的也比较少,接着作者也减少了ConvNeXt Block
中的Normalization层,只保留了depthwise conv
后的Normalization层。此时准确率已经达到了81.4%
,已经超过了Swin-T
。 - Substituting BN with LN,将BN替换成LN。Batch Normalization(BN)在卷积神经网络中是非常常用的操作了,它可以加速网络的收敛并减少过拟合(但用的不好也是个大坑)。但在
Transformer
中基本都用的Layer Normalization(LN),因为最开始Transformer
是应用在NLP领域的,BN又不适用于NLP相关任务。接着作者将BN全部替换成了LN,发现准确率还有小幅提升达到了81.5%
。 - Separate downsampling layers,单独的下采样层。在
ResNet
网络中stage2-stage4
的下采样都是通过将主分支上3x3
的卷积层步距设置成2,捷径分支上1x1
的卷积层步距设置成2进行下采样的。但在Swin Transformer
中是通过一个单独的Patch Merging
实现的。接着作者就为ConvNext
网络单独使用了一个下采样层,就是通过一个Laryer Normalization加上一个卷积核大小为2步距为2的卷积层构成。更改后准确率就提升到了82.0%
。
2.7 ConvNext variants
对于ConvNeXt
网络,作者提出了T/S/B/L
四个版本,计算复杂度刚好和Swin Transformer
中的T/S/B/L
相似。
- ConvNeXt-T: C = (96, 192, 384, 768), B = (3, 3, 9, 3)
- ConvNeXt-S: C = (96, 192, 384, 768), B = (3, 3, 27, 3)
- ConvNeXt-B: C = (128, 256, 512, 1024), B = (3, 3, 27, 3)
- ConvNeXt-L: C = (192, 384, 768, 1536), B = (3, 3, 27, 3)
- ConvNeXt-XL: C = (256, 512, 1024, 2048), B = (3, 3, 27, 3)
其中C代表4个stage
中输入的通道数,B代表每个stage
重复堆叠block的次数。
3. 训练
下图是我根据源码手绘的ConvNeXt-T
网络结构图,仔细观察ConvNeXt Block
会发现其中还有一个Layer Scale
操作
(论文中并没有提到),其实它就是将输入的特征层乘上一个可训练的参数,该参数就是一个向量
元素个数与特征层channel相同,即对每个channel的数据进行缩放。
Layer Scale
操作出自于Going deeper with image transformers. ICCV, 2021
这篇文章
4. 代码
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import resnext50_32x4d
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape), requires_grad=True)
self.bias = nn.Parameter(torch.zeros(normalized_shape), requires_grad=True)
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise ValueError(f"not support data format '{self.data_format}'")
self.normalized_shape = (normalized_shape,)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
# [batch_size, channels, height, width]
mean = x.mean(1, keepdim=True)
var = (x - mean).pow(2).mean(1, keepdim=True)
x = (x - mean) / torch.sqrt(var + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class Block(nn.Module):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_rate (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_rate=0., layer_scale_init_value=1e-6):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6, data_format="channels_last")
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim,)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_rate) if drop_rate > 0. else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # [N, C, H, W] -> [N, H, W, C]
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # [N, H, W, C] -> [N, C, H, W]
x = shortcut + self.drop_path(x)
return x
class ConvNeXt(nn.Module):
r""" ConvNeXt
A PyTorch impl of : `A ConvNet for the 2020s` -
https://arxiv.org/pdf/2201.03545.pdf
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_path_rate (float): Stochastic depth rate. Default: 0.
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
"""
def __init__(self, in_chans: int = 3, num_classes: int = 1000, depths: list = None,
dims: list = None, drop_path_rate: float = 0., layer_scale_init_value: float = 1e-6,
head_init_scale: float = 1.):
super().__init__()
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
stem = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"))
self.downsample_layers.append(stem)
# 对应stage2-stage4前的3个downsample
for i in range(3):
downsample_layer = nn.Sequential(LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2))
self.downsample_layers.append(downsample_layer)
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple blocks
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
cur = 0
# 构建每个stage中堆叠的block
for i in range(4):
stage = nn.Sequential(
*[Block(dim=dims[i], drop_rate=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value)
for j in range(depths[i])]
)
self.stages.append(stage)
cur += depths[i]
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
self.head = nn.Linear(dims[-1], num_classes)
self.apply(self._init_weights)
self.head.weight.data.mul_(head_init_scale)
self.head.bias.data.mul_(head_init_scale)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
nn.init.trunc_normal_(m.weight, std=0.2)
nn.init.constant_(m.bias, 0)
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
for i in range(4):
x = self.downsample_layers[i](x)
x = self.stages[i](x)
return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.forward_features(x)
x = self.head(x)
return x
def convnext_tiny(num_classes: int):
# https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth
model = ConvNeXt(depths=[3, 3, 9, 3],
dims=[96, 192, 384, 768],
num_classes=num_classes,
drop_path_rate=0.2)
return model
def convnext_small(num_classes: int):
# https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth
model = ConvNeXt(depths=[3, 3, 27, 3],
dims=[96, 192, 384, 768],
num_classes=num_classes)
return model
def convnext_base(num_classes: int):
# https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth
# https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth
model = ConvNeXt(depths=[3, 3, 27, 3],
dims=[128, 256, 512, 1024],
num_classes=num_classes)
return model
def convnext_large(num_classes: int):
# https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth
# https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth
model = ConvNeXt(depths=[3, 3, 27, 3],
dims=[192, 384, 768, 1536],
num_classes=num_classes)
return model
def convnext_xlarge(num_classes: int):
# https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth
model = ConvNeXt(depths=[3, 3, 27, 3],
dims=[256, 512, 1024, 2048],
num_classes=num_classes)
return model
if __name__ == '__main__':
# from torchsummary import summary
#
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model = convnext_tiny(num_classes=5)
# model.to(device)
# print(model)
# x = torch.randn(1,3,224,224,device=device)
# y = model(x)
# print(y)
# summary(model, input_size=(3, 224, 224))
from thop import profile
model = convnext_tiny(num_classes=5)
input = torch.randn(1, 3, 224, 224)
flops, params = profile(model, inputs=(input,))
print("flops:{:.3f}G".format(flops/1e9))
print("params:{:.3f}M".format(params/1e6))
参考资料
【论文精读-ConvNeXt】A ConvNet for the 2020s - 知乎 (zhihu.com)
ConvNeXt网络详解_太阳花的小绿豆的博客-CSDN博客
最后
以上就是强健大地为你收集整理的2022-ConvNet CVPR2022-ConvNet CVPR的全部内容,希望文章能够帮你解决2022-ConvNet CVPR2022-ConvNet CVPR所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复