我是靠谱客的博主 强健大地,最近开发中收集的这篇文章主要介绍python进阶—pandas教程(二),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

pandas数据结构(DataFrame)

        DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值),DataFrame既有行索引也有列索引,可被看作是有Series组成的字典。

       1、创建DataFrame

import pandas as pd
import numpy as np

# 创建DataFrame
data = {"color": ["green", "red", "blue", "black", "yellow"], "price": [1, 2, 3, 4, 5]}
dataFrame1 = pd.DataFrame(data=data)  # 通过字典创建
dataFrame2 = pd.DataFrame(data=data, index=["index1", "index2", "index3", "index4", "index5"])
dataFrame3 = pd.DataFrame(data=data, index=["index1", "index2", "index3", "index4", "index5"], columns=["price"])  # 指定列索引
dataFrame4 = pd.DataFrame(data=np.arange(12).reshape(3, 4))  # 通过numpy数组创建

        2、查找DataFrame中的元素

data = {"color": ["green", "red", "blue", "black", "yellow"], "price": [1, 2, 3, 4, 5]}
dataFrame2 = pd.DataFrame(data=data, index=["index1", "index2", "index3", "index4", "index5"])
frame_index = dataFrame2.index  # 查找dataFrame中的所有行标签
frame_column = dataFrame2.columns  # 查找dataFrame中所有列标签
frame_values = dataFrame2.values  # 查找dataFrame中的所有值
frame_value1 = dataFrame2["color"]["index1"]  # 索引查找数值(先列后行)
frame_value2 = dataFrame2.at["index1", "color"]  # 索引查找数值
frame_value3 = dataFrame2.iat[0, 0]  # 绝对位置查找数值

        3、查找DataFrame中某一行/列元素

data = {"color": ["green", "red", "blue", "black", "yellow"], "price": [1, 2, 3, 4, 5]}
dataFrame2 = pd.DataFrame(data=data, index=["index1", "index2", "index3", "index4", "index5"])
# 查找DataFrame一行/列元素
frame_index_value1 = dataFrame2.ix["index1"]  # 查找一行元素
frame_index_value2 = dataFrame2.ix[0]  # 查找一行元素(绝对位置)
frame_index_value3 = dataFrame2.loc["index1"]  # 查找一行元素
frame_index_value4 = dataFrame2.iloc[0]  # 查找一行元素(绝对位置)
frame_index_value5 = dataFrame2.values[0]  # 查找一行元素
frame_column_value1 = dataFrame2["price"]  # 查找一列元素
frame_column_value2 = dataFrame2.loc[:, "price"]  # 查找一列元素
frame_column_value3 = dataFrame2.iloc[:, 0]  # 查找一列元素(绝对位置)

        4、查找DataFrame中的多行/列元素

data = {"color": ["green", "red", "blue", "black", "yellow"], "price": [1, 2, 3, 4, 5]}
dataFrame2 = pd.DataFrame(data=data, index=["index1", "index2", "index3", "index4", "index5"])
# 查找DataFrame多行/列元素
dataFrame2.head(5)  # 查看前5行元素
dataFrame2.tail(5)  # 查看后5行元素
frame_index_values1 = dataFrame2["index1":"index4"]  # 切片多行
frame_index_values2 = dataFrame2[0:4]  # 切片多行
frame_index_values3 = dataFrame2.ix[["index1", "index2"]]  # 多行
frame_index_values4 = dataFrame2.ix[[0, 1]]  # 多行
frame_index_values5 = dataFrame2.loc[["index1", "index2"]]  # 多行
frame_index_values6 = dataFrame2.iloc[[0, 1]]  # 多行
frame_column_values1 = dataFrame2.loc[:, ["price"]]  # 多列
frame_column_values2 = dataFrame2.iloc[:, [0, 1]]  # 多列
frame_column_values3 = dataFrame2.ix[:, ["price", "color"]]  # 多列
frame_column_values4 = dataFrame2.ix[:, [0, 1]]  # 多列

        5、查找DataFrame多行多列元素

# 查找DataFrame多行多列元素
frame_values1 = dataFrame2.loc[["index1", "index3"], ["price"]]  # 索引查找
frame_values2 = dataFrame2.iloc[[1, 2], [0]]  # 绝对位置查找
frame_values3 = dataFrame2.ix[["index1", "index3"], ["price"]]
frame_values4 = dataFrame2.ix[[1, 2], [0]]

        6、添加一行/列元素

print("####添加一行元素####")
dataFrame2.loc["index6"] = ["pink", 3]  # dataFrame2.loc["index6"]=10
dataFrame2.iloc[5] = 10
dataFrame2.ix["index7"] = 10
dataFrame2.append(dataFrame2.iloc[3], ignore_index=True)
print("####添加一列元素####")
dataFrame2.loc[:, "size"] = "small"
dataFrame2.iloc[:, 2] = 10

        7、修改元素

# 修改元素
dataFrame2.loc["index1", "price"] = 100
dataFrame2.iloc[0, 1] = 10
dataFrame2.at["index1", "price"] = 100
dataFrame2.iat[0, 1] = 10
print(dataFrame2)

        8、删除元素

dataFrame2.drop(["index6", "index7"], inplace=True)  # inplace=True表示作用在原数组
dataFrame2.drop(["size"], axis=1, inplace=False)

 

最后

以上就是强健大地为你收集整理的python进阶—pandas教程(二)的全部内容,希望文章能够帮你解决python进阶—pandas教程(二)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(54)

评论列表共有 0 条评论

立即
投稿
返回
顶部