我是靠谱客的博主 粗心秋天,最近开发中收集的这篇文章主要介绍离散余弦变换,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

离散余弦变换(DCT for Discrete Cosine Transform)是与傅里叶变换相关的一种变换,它类似于离散傅里叶变换(DFT for Discrete Fourier Transform),但是只使用实数。离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的(因为一个实偶函数的傅里叶变换仍然是一个实偶函数),在有些变形里面需要将输入或者输出的位置移动半个单位(DCT有8种标准类型,其中4种是常见的)。

离散傅里叶变换需要进行复数运算,尽管有FFT可以提高运算速度,但在图像编码、特别是在实时处理中非常不便。离散傅里叶变换在实际的图像通信系统中很少使用,但它具有理论的指导意义。根据离散傅里叶变换的性质,实偶函数的傅里叶变换只含实的余弦项,因此构造了一种实数域的变换——离散余弦变换(DCT)。通过研究发现,DCT除了具有一般的正交变换性质外,其变换阵的基向量很近似于Toeplitz矩阵的特征向量,后者体现了人类的语言、图像信号的相关特性。因此,在对语音、图像信号变换的确定的变换矩阵正交变换中,DCT变换被认为是一种准最佳变换。在近年颁布的一系列视频压缩编码的国际标准建议中,都把 DCT 作为其中的一个基本处理模块。
DCT除了上述介绍的几条特点,即:实数变换、确定的变换矩阵、准最佳变换性能外,二维DCT还是一种可分离的变换,可以用两次一维变换得到二维变换结果。
最常用的一种离散余弦变换的类型是下面给出的第二种类型,通常我们所说的离散余弦变换指的就是这种。它的逆,也就是下面给出的第三种类型,通常相应的被称为" 反离散余弦变换"," 逆离散余弦变换"或者" IDCT"。
有两个相关的变换,一个是离散 正弦变换(DST for Discrete Sine Transform),它相当于一个长度大概是它两倍的实 奇函数的 离散傅里叶变换;另一个是改进的离散余弦变换(MDCT for Modified Discrete Cosine Transform),它相当于对交叠的数据进行离散余弦变换。
主要应用
离散余弦变换,尤其是它的第二种类型,经常被信号处理和 图像处理使用,用于对信号和图像(包括静止图像和运动图像)进行 有损数据压缩。这是由于离散余弦变换具有很强的"能量集中"特性:大多数的自然信号(包括声音和图像)的能量都集中在离散余弦变换后的低频部分,而且当信号具有接近 马尔科夫过程(Markov processes)的统计特性时,离散余弦变换的去相关性接近于K-L变换(Karhunen-Loève 变换--它具有最优的去相关性)的性能。
例如,在静止 图像编码标准JPEG中,在 运动图像编码标准MJPEG和MPEG的各个标准中都使用了离散余弦变换。在这些标准制中都使用了二维的第二种类型离散余弦变换,并将结果进行量化之后进行熵编码。这时对应第二种类型离散余弦变换中的n通常是8,并用该 公式对每个8x8块的每行进行变换,然后每列进行变换。得到的是一个8x8的变换系数 矩阵。其中(0,0)位置的元素就是直流分量,矩阵中的其他元素根据其位置表示不同频率的交流分量。
一个类似的变换, 改进的离散余弦变换被用在高级音频编码(AAC for Advanced Audio Coding),Vorbis 和 MP3 音频压缩当中。
离散余弦变换也经常被用来使用谱方法来解偏微分 方程,这时候离散余弦变换的不同的变量对应着 数组两端不同的奇/偶边界条件。

计算方式

尽管直接使用公式进行变换需要进行O(n2)次操作,但是和 快速傅里叶变换类似,我们有复杂度为O(nlog(n))的快速算法,这就是常常被称做蝶形变换的一种 分解算法。另外一种方法是通过快速傅里叶变换来计算DCT,这时候需要O(n)的预操作和后操作。



最后

以上就是粗心秋天为你收集整理的离散余弦变换的全部内容,希望文章能够帮你解决离散余弦变换所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(52)

评论列表共有 0 条评论

立即
投稿
返回
顶部