我是靠谱客的博主 怕孤独魔镜,最近开发中收集的这篇文章主要介绍数字信号处理第一章 离散时间信号与系统第一章 离散时间信号与系统,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

文章目录

  • 第一章 离散时间信号与系统
    • 离散时间信号
      • 几种常见的信号
      • 离散周期序列
      • 序列的运算
    • 离散时间信号的傅里叶变换和z变换
      • 离散时间信号灯的傅里叶变换
      • 性质
      • z变换
      • 逆z变换
      • z变换的性质
      • z变换域DTFT的关系
      • Parseval定理
    • 离散时间系统
      • 线性系统
      • 时不变系统
      • 线性时不变系统
      • 稳定系统和因果系统

第一章 离散时间信号与系统

离散时间信号

离散时间信号常用序列来表示。序列是时间上不连续的一串样本值的几何{x(n)},n为整型变量,n为整型变量,x(n)表示序列中的第n个样本值符号,{ ⋅ cdot }表示全部样本值的集合
{x(n)}既可以使实数序列,也可以是复数序列。{x(n)}的复共轭序列用{x*(n)}表示,为方便通常去掉{}
用x(n)表示序列

离散时间信号x(n)是从连续时间信号 x a ( t ) x_a(t) xa(t)采样得到的,对于等时间间隔的采样(均匀采样)
x ( n ) = x a ( t ) ∣ t = n T = x a ( n T ) x(n)=x_a(t)|_{t=nT}=x_a(nT) x(n)=xa(t)t=nT=xa(nT)
T表示两个样本间的时间间隔称作采样周期,采样周期的倒数称为采样频率,即 f s = 1 T f_s=frac{1}{T} fs=T1

几种常见的信号

1.单位脉冲序列

δ ( n ) = { 1 , n = 0 0 , n ≠ 0 delta(n) =begin{cases} {1,n=0}\ {0,n neq 0} end{cases} δ(n)={1,n=00,n̸=0

序列 δ ( n ) delta(n) δ(n)又称为离散冲激,或简称为冲激。它的作用类似于模拟系统中的单位冲激函数 δ ( t ) delta(t) δ(t)
δ ( t ) delta(t) δ(t)是非现实的信号,而 δ ( n ) delta(n) δ(n)是现实的序列

2.单位阶跃序列

u ( n ) = { 1 , n ≥ 0 0 , n &lt; 0 u(n) =begin{cases} {1,ngeq0}\ {0,n &lt; 0} end{cases} u(n)={1,n00,n<0

类似连续时间信号中的单位阶跃信号

3.矩形序列

R N ( n ) = { 1 , 0 ≤ n ≤ N − 1 0 , n &lt; 0 , n ≥ N R_N(n) =begin{cases} {1,0leq nleq N-1}\ {0,n &lt; 0,n geq N} end{cases} RN(n)={1,0nN10,n<0,nN

从n=0开始,含有N个幅度为1的数值,其余为零

4.实指数序列

x ( n ) = a n u ( n ) x(n)=a^nu(n) x(n)=anu(n)

式中,a为不等于0的任意实数,当|a|<1时,序列收敛,当|a|>1时,序列发散

5.正弦序列

x ( n ) = s i n ( ω 0 n ) x(n)=sin(omega_0 n) x(n)=sin(ω0n)

ω 0 omega _0 ω0是数字域角频率,单位是rad(弧度)

6.复指数序列

x ( n ) = ( r e j ω 0 ) n = r n [ c o s ( ω 0 ) + j s i n ( ω 0 n ) ] x(n)=(re^{jomega_0})^n=r^n[cos(omega_0)+jsin(omega_0 n)] x(n)=(rejω0)n=rn[cos(ω0)+jsin(ω0n)]

复指数序列的底数 a = r e j ω 0 a=re^{jomega_0} a=rejω0,当r=1时,x(n)的实部和虚部分别是余弦和正弦序列
复指数序列可以用其幅度和相位表示,也可以用实部进而虚部来表示

离散周期序列

对于一个周期为N的离散周期序列记做 x ‾ ( n ) overline{x}(n) x(n)(顶上应该是波浪线,没有固用横线代替)
x ‾ ( n ) = x ‾ ( n + k N ) , 0 ≤ n ≤ N − 1 , k 为 任 意 正 整 数 overline{x}(n)=overline{x}(n+kN),0leq nleq N-1,k为任意正整数 x(n)=x(n+kN)0nN1,k

讨论 x ( n ) = s i n ( ω 0 n ) x(n)=sin(omega_0 n) x(n)=sin(ω0n)的周期性
x ( n + N ) = s i n ( ω 0 ( n + N ) ) x(n+N)=sin(omega_0(n+N)) x(n+N)=sin(ω0(n+N))
满足 ω 0 N = 2 π i omega_0 N=2pi i ω0N=2πi,i为整数时,根据定义
x ( n ) = x ( n + N ) x(n)=x(n+N) x(n)=x(n+N)
所以sin(omega_0 n)为周期序列,周期是 N = 2 π i ω 0 N=frac{2pi i}{omega_0} N=ω02πi,当i=1时,N N = 2 π ω 0 N=frac{2pi }{omega_0} N=ω02π成了最小的函数周期
对于复指数序列,当r=1时周期性与正弦序列相同

序列的运算

(1)序列的相加
两个长度相等的序列x(n),y(n),则z(n)=x(n)+y(n)表示这两个序列的相加。
(2)序列的相乘
f(n)=x(n)y(n),将两序列逐值相乘形成新序列
(3)序列的移位
序列x(n)平移 n 0 n_0 n0个序数,可以表示为 y ( n ) = x ( n − n 0 ) y(n)=x(n-n_0) y(n)=x(nn0). n 0 &gt; 0 n_0&gt;0 n0>0时,y(n)是x(n)的延迟, n 0 &lt; 0 n_0&lt;0 n0<0时,y(n)超前x(n)
(4)序列的能量以及序列的绝对值
序列的能量定义
S = ∑ n = − ∞ ∞ ∣ x ( n ) ∣ 2 S=sum_{n=-infty}^{infty}|x(n)|^2 S=n=x(n)2
如果序列的能量满足
∑ n = − ∞ ∞ ∣ x ( n ) ∣ 2 &lt; ∞ sum_{n=-infty}^{infty}|x(n)|^2&lt;infty n=x(n)2<
x ( n ) x(n) x(n)为平方可和序列。
如果序列x(n)满足
∑ n = − ∞ ∞ ∣ x ( n ) ∣ &lt; ∞ sum_{n=-infty}^{infty}|x(n)|&lt;infty n=x(n)<
x ( n ) x(n) x(n)为绝对可和序列
如果一个序列x(n)的每一个样本的绝对值均小于某一个有限的正整数 B x B_x Bx,则x(n)为有界序列,即
∣ x ( n ) ∣ ≤ B x ≤ ∞ |x(n)|leq B_xleqinfty x(n)Bx
(5)实序列的偶部和奇部
对于所有的n,有x(n)=x(-n),则x(n)称为偶序列,x(n)=-x(-n),则x(n)称为奇序列
任何序列均可以分解成偶对称序列和奇对称序列
x ( n ) = x e ( n ) + x o ( n ) x(n)=x_e(n)+x_o(n) x(n)=xe(n)+xo(n)
x e ( n ) x_e(n) xe(n) x o ( n ) x_o(n) xo(n)也分别称为x(n)的偶部和奇部,它们分别等于
x e ( n ) = 1 2 [ x ( n ) + x ( − n ) ] x_e(n)=frac{1}{2}[x(n)+x(-n)] xe(n)=21[x(n)+x(n)]
x o ( n ) = 1 2 [ x ( n ) − x ( − n ) ] x_o(n)=frac{1}{2}[x(n)-x(-n)] xo(n)=21[x(n)x(n)]
(6)任意序列的单位脉冲序列表示
任一新序列都可以表示成单位脉冲蓄力的移位的加权和,即
x ( n ) = ∑ m = − ∞ ∞ x ( m ) δ ( n − m ) x(n)=sum_{m=-infty}^{infty}x(m)delta(n-m) x(n)=m=x(m)δ(nm)

离散时间信号的傅里叶变换和z变换

离散时间信号灯的傅里叶变换

离散时间傅里叶变换即DTFT(discrete-time Fourier transform)
序列x(n)的DTFT定义为
X ( e j ω ) = ∑ n = − ∞ ∞ x ( n ) e − j ω n X(e^{jomega})=sum_{n=-infty}^{infty}x(n)e^{-jomega n} X(ejω)=n=x(n)ejωn
(类似傅里叶级数)
式中, ω omega ω为数字角频率,它是频率f对采样频率fs作归一化后的角频率
ω = 2 π f f s omega=frac{2pi f}{f_s} ω=fs2πf
X ( e j ω ) X(e^{jomega}) X(ejω) ω omega ω的连续函数,并且是以 2 π 2pi 2π为周期的
上式级数不一定收敛,如单位阶跃序列
收敛的充分条件是
∑ n = − ∞ ∞ ∣ x ( n ) e − j ω n ∣ = ∑ n = − ∞ ∞ ∣ x ( n ) ∣ &lt; ∞ sum_{n=-infty}^{infty}|x(n)e^{-jomega n}|=sum_{n=-infty}^{infty}|x(n)|&lt;infty n=x(n)ejωn=n=x(n)<
即x(n)绝对可和,则它的DTFT一定存在。同时,也可以推断,有限长序列总是满足绝对可和条件的,其DTFT也总是存在的。
e j ω m e^{jomega m} ejωm乘以定义式的凉拌,并在 ω omega ω的一个周期的积分
可得
∫ − π π X ( e j ω ) e j ω m d ω = ∫ − π π [ ∑ n = − ∞ ∞ x ( n ) e − j ω n ] e j ω m int_{-pi}^{pi} X(e^{jomega})e^{jomega m}domega =int_{-pi}^{pi}[sum_{n=-infty}^{infty}x(n)e^{-jomega n}]e^{jomega m} ππX(ejω)ejωmdω=ππ[n=x(n)ejωn]ejωm
= ∑ n = − ∞ ∞ x ( n ) ∫ − π π e j ω ( m − n ) d ω = 2 π ∑ n = − ∞ ∞ x ( n ) δ ( m − n ) =sum_{n=-infty}^{infty}x(n)int_{-pi}^{pi}e^{jomega (m-n)}domega=2pisum_{n=-infty}^{infty}x(n)delta(m-n) =n=x(n)ππejω(mn)dω=2πn=x(n)δ(mn)
x ( n ) = 1 2 π ∫ − π π X ( e j ω ) e j ω n d ω x(n)=frac{1}{2pi}int_{-pi}^{pi }X(e^{jomega})e^{jomega n }domega x(n)=2π1ππX(ejω)ejωndω
这就是离散时间信号的逆傅里叶变换(IDTFT)
对应关系
X ( e j ω ) = D T F T [ x ( n ) ] X(e^{jomega})=DTFT[x(n)] X(ejω)=DTFT[x(n)]
x ( n ) = I D T F T [ X ( e j ω ) ] x(n)=IDTFT[X(e^{jomega})] x(n)=IDTFT[X(ejω)]

一般来说, X ( e j ω ) X(e^{jomega}) X(ejω)是实变量 ω omega ω的复函数,可以用实部和虚部表示
X ( e j ω ) = R e [ X ( e j ω ) ] + j I m [ X ( e j ω ) ] X(e^{jomega})=Re[X(e^{jomega})]+jIm[X(e^{jomega})] X(ejω)=Re[X(ejω)]+jIm[X(ejω)]
也可以用幅度和相位表示
X ( e j ω ) = ∣ X ( e j ω ) ∣ e j φ ( ω ) X(e^{jomega})=|X(e^{jomega})|e^{jvarphi(omega)} X(ejω)=X(ejω)ejφ(ω)

性质

信号与系统中有详述

z变换

z变换的定义式
X ( z ) = ∑ n = − ∞ ∞ x ( n ) z − n X(z)=sum_{n=-infty}^{infty}x(n)z^{-n} X(z)=n=x(n)zn
式中,z是复变量,也可记 Z [ x ( n ) ] = X ( z ) mathscr{Z}[x(n)]=X(z) Z[x(n)]=X(z)
对于所有的序列,z变换并不总是收敛的。收敛区域是
R x − &lt; ∣ z ∣ &lt; R x + R_{x-}&lt;|z|&lt;R_{x+} Rx<z<Rx+(一般 R x − R_{x-} Rx可以小到0, R x + R_{x+} Rx+可以大到 ∞ infty )

收敛域的讨论
(1)有限长序列。
仅有有限个数的序列值是非零值,从而
X ( z ) = ∑ n = n 1 n 2 x ( n ) z − n X(z)=sum_{n=n_1}^{n_2}x(n)z^{-n} X(z)=n=n1n2x(n)zn
式中, n 1 n_1 n1 n 2 n_2 n2是有限整数,收敛域至少是0<|z|< ∞ infty
(2).右边序列。右边序列是n< n 1 n_1 n1时x(n)=0的序列,z变换为
X ( z ) = ∑ n = n 1 ∞ x ( n ) z − n X(z)=sum_{n=n_1}^{infty}x(n)z^{-n} X(z)=n=n1x(n)zn
右边序列的收敛区域是一个半径为 R x − R_{x-} Rx,即
|z|> R x − R_{x-} Rx
n 1 ≥ n_1geq n1,则z变换在z= ∞ infty 处收敛,反之,若 n 1 n_1 n1<0,则它在z= ∞ infty 处将不收敛
(3)左边序列。左边序列是n> n 2 n_2 n2时x(n)=0的序列,z变换为
X ( z ) = ∑ n = − ∞ n 2 x ( n ) z − n X(z)=sum_{n=-infty}^{n_2}x(n)z^{-n} X(z)=n=n2x(n)zn
左边序列的收敛区域是一个圆的内部,即
|z|< R x + R_{x+} Rx+
n 2 n_2 n2<0,则左边序列的z变换在z=0处收敛
(4)双边序列。一个双边序列可以看做一个左边序列和一个右边序列之和,因此双边序列z变换的收敛域就是这两个序列z变换的公共收敛区间
X ( z ) = ∑ n = n 1 ∞ x ( n ) z − n + ∑ n = − ∞ n 2 x ( n ) z − n X(z)=sum_{n=n_1}^{infty}x(n)z^{-n}+sum_{n=-infty}^{n_2}x(n)z^{-n} X(z)=n=n1x(n)zn+n=n2x(n)zn
所以收敛域为
R x − &lt; ∣ z ∣ &lt; R x + R_{x-}&lt;|z|&lt;R_{x+} Rx<z<Rx+
R x − &gt; R x + R_{x-}&gt;R_{x+} Rx>Rx+,则没有公共区域,不能收敛

逆z变换

公式
x ( n ) = 1 2 π j ∮ C X ( z ) z n − 1 d z x(n)=frac{1}{2pi j }oint_{C}X(z)z^{n-1}dz x(n)=2πj1CX(z)zn1dz

直接用公式求很麻烦,具体求解在信号与系统里有

z变换的性质

具体在信号与系统里

z变换域DTFT的关系

一个序列x(n)的z变换是
X ( z ) = ∑ n = − ∞ ∞ x ( n ) z − n X(z)=sum_{n=-infty}^{infty} x(n)z^{-n} X(z)=n=x(n)zn
DTFT是
X ( e j ω ) = ∑ n = − ∞ ∞ x ( n ) e − j n ω X(e^{jomega})=sum_{n=-infty}^{infty}x(n)e^{-jnomega} X(ejω)=n=x(n)ejnω
z = e j ω z=e^{jomega} z=ejω
X ( z ) ∣ z = e j ω = ∑ n = − ∞ ∞ x ( n ) e − j n ω X(z)|z=e^{jomega}=sum_{n=-infty}^{infty}x(n)e^{-jnomega} X(z)z=ejω=n=x(n)ejnω
可以看出,当 z = e j ω z=e^{jomega} z=ejω时,z变换和DFTF相等。也就是说,采样序列圆上的z变换就等于该采样序列的DTFT。由于 e j ω = e j ( ω + 2 k π ) e^{jomega}=e^{j(omega+2kpi)} ejω=ej(ω+2kπ),所以 X ( e j ω ) X(e^{jomega}) X(ejω)是以 2 π 2pi 2π为周期的周期函数,z平面单位圆上的一周正好对应 X ( e j ω ) X(e^{jomega}) X(ejω)的一个周期

Parseval定理

离散时间系统

将输入序列映射成输出序列y(n)的唯一性变换或运算,亦即将一个序列变换成另一个序列的系统。记为
y ( n ) = T [ x ( n ) ] y(n)=T[x(n)] y(n)=T[x(n)]

线性系统

满足叠加原理

时不变系统

T [ x ( n ) ] = y ( n ) T[x(n)]=y(n) T[x(n)]=y(n)
T [ x ( n − n 0 ) ] = y ( n − n 0 ) T[x(n-n_0)]=y(n-n_0) T[x(nn0)]=y(nn0)
x(n)移位和变换后移位是等效的

线性时不变系统

单位脉冲响应可以表示为
h ( n ) = T [ δ ( n ) ] h(n)=T[delta(n)] h(n)=T[δ(n)]
根据上式可以得到任一输入序列x(n)的响应
y ( n ) = T [ x ( n ) ] = T [ ∑ k = − ∞ ∞ x ( k ) δ ( n − k ) ] y(n)=T[x(n)]=T[sum_{k=-infty}^{infty}x(k)delta(n-k)] y(n)=T[x(n)]=T[k=x(k)δ(nk)]
由于系统是线性的,所以
y ( n ) = ∑ k = − ∞ ∞ x ( k ) T [ δ ( n − k ) ] y(n)=sum_{k=-infty}^{infty}x(k)T[delta(n-k)] y(n)=k=x(k)T[δ(nk)]
由于系统是时不变的,即有 T [ δ ( n − k ) ] = h ( n − k ) T[delta(n-k)]=h(n-k) T[δ(nk)]=h(nk)
从而得到
y ( n ) = ∑ k = − ∞ ∞ x ( k ) h ( n − k ) = x ( n ) ∗ h ( n ) y(n)=sum_{k=-infty}^{infty}x(k)h(n-k)=x(n)* h(n) y(n)=k=x(k)h(nk)=x(n)h(n)

matlab 中离散用conv函数

稳定系统和因果系统

只要输入序列是有界的,其输出必定是有界的,这样的系统称为稳定系统。稳定系统的充要条件是其单位脉冲响应应绝对可和,即
∑ n = − ∞ ∞ ∣ h ( n ) ∣ &lt; ∞ sum_{n=-infty}^{infty}|h(n)|&lt;infty n=h(n)<

因果系统就是系统的输出y(n)取决于此时,以及此时以前的输入,即x(n),x(n-1),x(n-2)等。相反,如果系统的输出y(n)不仅取决于现在和过去的输入,而且取决于未来的输入,如x(n+1),x(n+2)等,这在时间上就违背 了因果规律

最后

以上就是怕孤独魔镜为你收集整理的数字信号处理第一章 离散时间信号与系统第一章 离散时间信号与系统的全部内容,希望文章能够帮你解决数字信号处理第一章 离散时间信号与系统第一章 离散时间信号与系统所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(65)

评论列表共有 0 条评论

立即
投稿
返回
顶部