概述
Unsupervised Transfer
Generate To Adapt: Aligning Domains using Generative Adversarial Networks
1.Main
using unlabeled target data help transfer(target image&class seen)
2.structure
3. Loss Func
- Source Data:
D:
G:
C&F:
- Target data
4.DataSet
- Digit classification (MNIST, SVHN and USPS
datasets) - Object recognition using OFFICE datasets
- Domain adaptation from synthetic to real data;CAD synthetic dataset (source) and a subset of PASCAL
VOC dataset(target) - VISDA dataset:Trasfer competation
5.metric
classification accurancy
Disentangled Classification and Reconstruction for Zero-shot learning
Zero-Shot Visual Recognition using Semantics-Preserving
Adversarial Embedding Networks
1.Main
prevents the semantic loss while target image&class unseen
2. Structure
3. Loss Func
- Class loss
- Reconstruction Loss
3.Adversarial Loss
4.Dataset
CUB, AWA, SUN and aPY, SP-AEN
5.Metric
harmonic mean (H) on generalized ZSL
The Seen-Unseen accuracy Curve (SUC)
Conditional GAN on feature space
Adversarial Feature Augmentation for Unsupervised Domain Adaptation
1.Main
Gener new feature vec for augmentation
2.Structure
3.Loss Func
- S1 Train reference feature encoder ES Classfier C in Source data
- S2 Conditional Gan for gener new feature vec in Source domain,get Encoder S
- S3 Train encoder in T&S advertising with S
4.Datasets
- mnist ,usps :white digit on black background
- svhn:real images of street view house numbers
- syn digits:syn on svhn
- nyud:object RGB->D
5.Metric
- t-SNE
- APs:feature augmentation
- Accuracy:compare with C trained on S,T,Other method
最后
以上就是和谐世界为你收集整理的Transfer Learning&GANUnsupervised TransferDisentangled Classification and Reconstruction for Zero-shot learningConditional GAN on feature space的全部内容,希望文章能够帮你解决Transfer Learning&GANUnsupervised TransferDisentangled Classification and Reconstruction for Zero-shot learningConditional GAN on feature space所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复