概述
[LeetCode] 87. Scramble String 搅乱字符串
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
great
/
gr eat
/ /
g r e at
/
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".
rgeat
/
rg eat
/ /
r g e at
/
a t
We say that "rgeat" is a scrambled string of "great".
Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".
rgtae
/
rg tae
/ /
r g ta e
/
t a
We say that "rgtae" is a scrambled string of "great".
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
Example 1:
Input: s1 = "great", s2 = "rgeat"
Output: true
Example 2:
Input: s1 = "abcde", s2 = "caebd"
Output: false
这道题定义了一种搅乱字符串,就是说假如把一个字符串当做一个二叉树的根,然后它的非空子字符串是它的子节点,然后交换某个子字符串的两个子节点,重新爬行回去形成一个新的字符串,这个新字符串和原来的字符串互为搅乱字符串。这道题可以用递归 Recursion 或是动态规划 Dynamic Programming 来做,我们先来看递归的解法,简单的说,就是 s1 和 s2 是 scramble 的话,那么必然存在一个在 s1 上的长度 l1,将 s1 分成 s11 和 s12 两段,同样有 s21 和 s22,那么要么 s11 和 s21 是 scramble 的并且 s12 和 s22 是 scramble 的;要么 s11 和 s22 是 scramble 的并且 s12 和 s21 是 scramble 的。就拿题目中的例子 rgeat 和 great 来说,rgeat 可分成 rg 和 eat 两段, great 可分成 gr 和 eat 两段,rg 和 gr 是 scrambled 的, eat 和 eat 当然是 scrambled。根据这点,我们可以写出代码如下:
解法一:
// Recursion class Solution { public: bool isScramble(string s1, string s2) { if (s1.size() != s2.size()) return false; if (s1 == s2) return true; string str1 = s1, str2 = s2; sort(str1.begin(), str1.end()); sort(str2.begin(), str2.end()); if (str1 != str2) return false; for (int i = 1; i < s1.size(); ++i) { string s11 = s1.substr(0, i); string s12 = s1.substr(i); string s21 = s2.substr(0, i); string s22 = s2.substr(i); if (isScramble(s11, s21) && isScramble(s12, s22)) return true; s21 = s2.substr(s1.size() - i); s22 = s2.substr(0, s1.size() - i); if (isScramble(s11, s21) && isScramble(s12, s22)) return true; } return false; } };
当然,这道题也可以用动态规划 Dynamic Programming,根据以往的经验来说,根字符串有关的题十有八九可以用 DP 来做,那么难点就在于如何找出状态转移方程。这其实是一道三维动态规划的题目,使用一个三维数组 dp[i][j][n],其中i是 s1 的起始字符,j是 s2 的起始字符,而n是当前的字符串长度,dp[i][j][len] 表示的是以i和j分别为 s1 和 s2 起点的长度为 len 的字符串是不是互为 scramble。有了 dp 数组接下来看看状态转移方程,也就是怎么根据历史信息来得到 dp[i][j][len]。判断这个是不是满足,首先是把当前 s1[i...i+len-1] 字符串劈一刀分成两部分,然后分两种情况:第一种是左边和 s2[j...j+len-1] 左边部分是不是 scramble,以及右边和 s2[j...j+len-1] 右边部分是不是 scramble;第二种情况是左边和 s2[j...j+len-1] 右边部分是不是 scramble,以及右边和 s2[j...j+len-1] 左边部分是不是 scramble。如果以上两种情况有一种成立,说明 s1[i...i+len-1] 和 s2[j...j+len-1] 是 scramble 的。而对于判断这些左右部分是不是 scramble 是有历史信息的,因为长度小于n的所有情况都在前面求解过了(也就是长度是最外层循环)。上面说的是劈一刀的情况,对于 s1[i...i+len-1] 有 len-1 种劈法,在这些劈法中只要有一种成立,那么两个串就是 scramble 的。总结起来状态转移方程是:
dp[i][j][len] = || (dp[i][j][k] && dp[i+k][j+k][len-k] || dp[i][j+len-k][k] && dp[i+k][j][len-k])
对于所有 1<=k<len,也就是对于所有 len-1 种劈法的结果求或运算。因为信息都是计算过的,对于每种劈法只需要常量操作即可完成,因此求解递推式是需要 O(len)(因为 len-1 种劈法)。如此总时间复杂度因为是三维动态规划,需要三层循环,加上每一步需要线行时间求解递推式,所以是 O(n^4)。虽然已经比较高了,但是至少不是指数量级的,动态规划还是有很大优势的,空间复杂度是 O(n^3)。代码如下:
解法二:
// DP class Solution { public: bool isScramble(string s1, string s2) { if (s1.size() != s2.size()) return false; if (s1 == s2) return true; int n = s1.size(); vector<vector<vector<bool>>> dp (n, vector<vector<bool>>(n, vector<bool>(n + 1))); for (int len = 1; len <= n; ++len) { for (int i = 0; i <= n - len; ++i) { for (int j = 0; j <= n - len; ++j) { if (len == 1) { dp[i][j][1] = s1[i] == s2[j]; } else { for (int k = 1; k < len; ++k) { if ((dp[i][j][k] && dp[i + k][j + k][len - k]) || (dp[i + k][j][len - k] && dp[i][j + len - k][k])) { dp[i][j][len] = true; } } } } } } return dp[0][0][n]; } };
上面的代码的实现过程如下,首先按单个字符比较,判断它们之间是否是 scrambled 的。在更新第二个表中第一个值 (gr 和 rg 是否为 scrambled 的)时,比较了第一个表中的两种构成,一种是 g与r, r与g,另一种是 g与g, r与r,其中后者是真,只要其中一个为真,则将该值赋真。其实这个原理和之前递归的原理很像,在判断某两个字符串是否为 scrambled 时,比较它们所有可能的拆分方法的子字符串是否是 scrambled 的,只要有一个种拆分方法为真,则比较的两个字符串一定是 scrambled 的。比较 rge 和 gre 的实现过程如下所示:
r g e
g x √ x
r √ x x
e x x √
rg ge
gr √ x
re x x
rge
gre √
DP 的另一种写法,参考另一篇文章,思路都一样,代码如下:
解法三:
// Still DP class Solution { public: bool isScramble(string s1, string s2) { if (s1.size() != s2.size()) return false; if (s1 == s2) return true; int n = s1.size(); vector<vector<vector<bool>>> dp (n, vector<vector<bool>>(n, vector<bool>(n + 1))); for (int i = n - 1; i >= 0; --i) { for (int j = n - 1; j >= 0; --j) { for (int k = 1; k <= n - max(i, j); ++k) { if (s1.substr(i, k) == s2.substr(j, k)) { dp[i][j][k] = true; } else { for (int t = 1; t < k; ++t) { if ((dp[i][j][t] && dp[i + t][j + t][k - t]) || (dp[i][j + k - t][t] && dp[i + t][j][k - t])) { dp[i][j][k] = true; break; } } } } } } return dp[0][0][n]; } };
下面这种解法和第一个解法思路相同,只不过没有用排序算法,而是采用了类似于求异构词的方法,用一个数组来保存每个字母出现的次数,后面判断 Scramble 字符串的方法和之前的没有区别:
解法四:
class Solution { public: bool isScramble(string s1, string s2) { if (s1 == s2) return true; if (s1.size() != s2.size()) return false; int n = s1.size(), m[26] = {0}; for (int i = 0; i < n; ++i) { ++m[s1[i] - 'a']; --m[s2[i] - 'a']; } for (int i = 0; i < 26; ++i) { if (m[i] != 0) return false; } for (int i = 1; i < n; ++i) { if ((isScramble(s1.substr(0, i), s2.substr(0, i)) && isScramble(s1.substr(i), s2.substr(i))) || (isScramble(s1.substr(0, i), s2.substr(n - i)) && isScramble(s1.substr(i), s2.substr(0, n - i)))) { return true; } } return false; } };
下面这种解法实际上是解法二的递归形式,我们用了 memo 数组来减少了大量的运算,注意这里的 memo 数组一定要有三种状态,初始化为 -1,区域内为 scramble 是1,不是 scramble 是0,这样就避免了已经算过了某个区间,但由于不是 scramble,从而又进行一次计算,从而会 TLE,参见代码如下:
解法五:
class Solution { public: bool isScramble(string s1, string s2) { if (s1 == s2) return true; if (s1.size() != s2.size()) return false; int n = s1.size(); vector<vector<vector<int>>> memo(n, vector<vector<int>>(n, vector<int>(n + 1, -1))); return helper(s1, s2, 0, 0, n, memo); } bool helper(string& s1, string& s2, int idx1, int idx2, int len, vector<vector<vector<int>>>& memo) { if (len == 0) return true; if (len == 1) memo[idx1][idx2][len] = s1[idx1] == s2[idx2]; if (memo[idx1][idx2][len] != -1) return memo[idx1][idx2][len]; for (int k = 1; k < len; ++k) { if ((helper(s1, s2, idx1, idx2, k, memo) && helper(s1, s2, idx1 + k, idx2 + k, len - k, memo)) || (helper(s1, s2, idx1, idx2 + len - k, k, memo) && helper(s1, s2, idx1 + k, idx2, len - k, memo))) { return memo[idx1][idx2][len] = 1; } } return memo[idx1][idx2][len] = 0; } };
到此这篇关于C++实现LeetCode(87.搅乱字符串)的文章就介绍到这了,更多相关C++实现搅乱字符串内容请搜索靠谱客以前的文章或继续浏览下面的相关文章希望大家以后多多支持靠谱客!
最后
以上就是凶狠绿茶为你收集整理的C++实现LeetCode(87.搅乱字符串)的全部内容,希望文章能够帮你解决C++实现LeetCode(87.搅乱字符串)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复