概述
[LeetCode] 98. Validate Binary Search Tree 验证二叉搜索树
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input:
2
/
1 3
Output: true
Example 2:
5
/
1 4
/
3 6
Output: false
Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value
is 5 but its right child's value is 4.
这道验证二叉搜索树有很多种解法,可以利用它本身的性质来做,即左<根<右,也可以通过利用中序遍历结果为有序数列来做,下面我们先来看最简单的一种,就是利用其本身性质来做,初始化时带入系统最大值和最小值,在递归过程中换成它们自己的节点值,用long代替int就是为了包括int的边界条件,代码如下:
C++ 解法一:
// Recursion without inorder traversal class Solution { public: bool isValidBST(TreeNode* root) { return isValidBST(root, LONG_MIN, LONG_MAX); } bool isValidBST(TreeNode* root, long mn, long mx) { if (!root) return true; if (root->val <= mn || root->val >= mx) return false; return isValidBST(root->left, mn, root->val) && isValidBST(root->right, root->val, mx); } };
Java 解法一:
public class Solution { public boolean isValidBST(TreeNode root) { if (root == null) return true; return valid(root, Long.MIN_VALUE, Long.MAX_VALUE); } public boolean valid(TreeNode root, long low, long high) { if (root == null) return true; if (root.val <= low || root.val >= high) return false; return valid(root.left, low, root.val) && valid(root.right, root.val, high); } }
这题实际上简化了难度,因为有的时候题目中的二叉搜索树会定义为左<=根<右,而这道题设定为一般情况左<根<右,那么就可以用中序遍历来做。因为如果不去掉左=根这个条件的话,那么下边两个数用中序遍历无法区分:
20 20
/
20 20
它们的中序遍历结果都一样,但是左边的是 BST,右边的不是 BST。去掉等号的条件则相当于去掉了这种限制条件。下面来看使用中序遍历来做,这种方法思路很直接,通过中序遍历将所有的节点值存到一个数组里,然后再来判断这个数组是不是有序的,代码如下:
C++ 解法二:
// Recursion class Solution { public: bool isValidBST(TreeNode* root) { if (!root) return true; vector<int> vals; inorder(root, vals); for (int i = 0; i < vals.size() - 1; ++i) { if (vals[i] >= vals[i + 1]) return false; } return true; } void inorder(TreeNode* root, vector<int>& vals) { if (!root) return; inorder(root->left, vals); vals.push_back(root->val); inorder(root->right, vals); } };
Java 解法二:
public class Solution { public boolean isValidBST(TreeNode root) { List<Integer> list = new ArrayList<Integer>(); inorder(root, list); for (int i = 0; i < list.size() - 1; ++i) { if (list.get(i) >= list.get(i + 1)) return false; } return true; } public void inorder(TreeNode node, List<Integer> list) { if (node == null) return; inorder(node.left, list); list.add(node.val); inorder(node.right, list); } }
下面这种解法跟上面那个很类似,都是用递归的中序遍历,但不同之处是不将遍历结果存入一个数组遍历完成再比较,而是每当遍历到一个新节点时和其上一个节点比较,如果不大于上一个节点那么则返回 false,全部遍历完成后返回 true。代码如下:
C++ 解法三:
class Solution { public: bool isValidBST(TreeNode* root) { TreeNode *pre = NULL; return inorder(root, pre); } bool inorder(TreeNode* node, TreeNode*& pre) { if (!node) return true; bool res = inorder(node->left, pre); if (!res) return false; if (pre) { if (node->val <= pre->val) return false; } pre = node; return inorder(node->right, pre); } };
当然这道题也可以用非递归来做,需要用到栈,因为中序遍历可以非递归来实现,所以只要在其上面稍加改动便可,代码如下:
C++ 解法四:
class Solution { public: bool isValidBST(TreeNode* root) { stack<TreeNode*> s; TreeNode *p = root, *pre = NULL; while (p || !s.empty()) { while (p) { s.push(p); p = p->left; } p = s.top(); s.pop(); if (pre && p->val <= pre->val) return false; pre = p; p = p->right; } return true; } };
Java 解法四:
public class Solution { public boolean isValidBST(TreeNode root) { Stack<TreeNode> s = new Stack<TreeNode>(); TreeNode p = root, pre = null; while (p != null || !s.empty()) { while (p != null) { s.push(p); p = p.left; } p = s.pop(); if (pre != null && p.val <= pre.val) return false; pre = p; p = p.right; } return true; } }
最后还有一种方法,由于中序遍历还有非递归且无栈的实现方法,称之为 Morris 遍历,可以参考博主之前的博客 Binary Tree Inorder Traversal,这种实现方法虽然写起来比递归版本要复杂的多,但是好处在于是 O(1) 空间复杂度,参见代码如下:
C++ 解法五:
class Solution { public: bool isValidBST(TreeNode *root) { if (!root) return true; TreeNode *cur = root, *pre, *parent = NULL; bool res = true; while (cur) { if (!cur->left) { if (parent && parent->val >= cur->val) res = false; parent = cur; cur = cur->right; } else { pre = cur->left; while (pre->right && pre->right != cur) pre = pre->right; if (!pre->right) { pre->right = cur; cur = cur->left; } else { pre->right = NULL; if (parent->val >= cur->val) res = false; parent = cur; cur = cur->right; } } } return res; } };
到此这篇关于C++实现LeetCode(98.验证二叉搜索树)的文章就介绍到这了,更多相关C++实现验证二叉搜索树内容请搜索靠谱客以前的文章或继续浏览下面的相关文章希望大家以后多多支持靠谱客!
最后
以上就是包容猫咪为你收集整理的C++实现LeetCode(98.验证二叉搜索树)的全部内容,希望文章能够帮你解决C++实现LeetCode(98.验证二叉搜索树)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复