我是靠谱客的博主 大气石头,最近开发中收集的这篇文章主要介绍C++实现LeetCode(72.编辑距离),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

[LeetCode] 72. Edit Distance 编辑距离

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

这道题让求从一个字符串转变到另一个字符串需要的变换步骤,共有三种变换方式,插入一个字符,删除一个字符,和替换一个字符。题目乍眼一看并不难,但是实际上却暗藏玄机,对于两个字符串的比较,一般都会考虑一下用 HashMap 统计字符出现的频率,但是在这道题却不可以这么做,因为字符串的顺序很重要。还有一种比较常见的错误,就是想当然的认为对于长度不同的两个字符串,长度的差值都是要用插入操作,然后再对应每位字符,不同的地方用修改操作,但是其实这样可能会多用操作,因为删除操作有时同时可以达到修改的效果。比如题目中的例子1,当把 horse 变为 rorse 之后,之后只要删除第二个r,跟最后一个e,就可以变为 ros。实际上只要三步就完成了,因为删除了某个字母后,原来左右不相连的字母现在就连一起了,有可能刚好组成了需要的字符串。所以在比较的时候,要尝试三种操作,因为谁也不知道当前的操作会对后面产生什么样的影响。对于当前比较的两个字符 word1[i] 和 word2[j],若二者相同,一切好说,直接跳到下一个位置。若不相同,有三种处理方法,首先是直接插入一个 word2[j],那么 word2[j] 位置的字符就跳过了,接着比较 word1[i] 和 word2[j+1] 即可。第二个种方法是删除,即将 word1[i] 字符直接删掉,接着比较 word1[i+1] 和 word2[j] 即可。第三种则是将 word1[i] 修改为 word2[j],接着比较 word1[i+1] 和 word[j+1] 即可。分析到这里,就可以直接写出递归的代码,但是很可惜会 Time Limited Exceed,所以必须要优化时间复杂度,需要去掉大量的重复计算,这里使用记忆数组 memo 来保存计算过的状态,从而可以通过 OJ,注意这里的 insertCnt,deleteCnt,replaceCnt 仅仅是表示当前对应的位置分别采用了插入,删除,和替换操作,整体返回的最小距离,后面位置的还是会调用递归返回最小的,参见代码如下:

解法一:

class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size(), n = word2.size();
        vector<vector<int>> memo(m, vector<int>(n));
        return helper(word1, 0, word2, 0, memo);
    }
    int helper(string& word1, int i, string& word2, int j, vector<vector<int>>& memo) {
        if (i == word1.size()) return (int)word2.size() - j;
        if (j == word2.size()) return (int)word1.size() - i;
        if (memo[i][j] > 0) return memo[i][j];
        int res = 0;
        if (word1[i] == word2[j]) {
            return helper(word1, i + 1, word2, j + 1, memo);
        } else {
            int insertCnt = helper(word1, i, word2, j + 1, memo);
            int deleteCnt = helper(word1, i + 1, word2, j, memo);
            int replaceCnt = helper(word1, i + 1, word2, j + 1, memo);
            res = min(insertCnt, min(deleteCnt, replaceCnt)) + 1;
        }
        return memo[i][j] = res;
    }
};

根据以往的经验,对于字符串相关的题目且求极值的问题,十有八九都是用动态规划 Dynamic Programming 来解,这道题也不例外。其实解法一的递归加记忆数组的方法也可以看作是 DP 的递归写法。这里需要维护一个二维的数组 dp,其大小为 mxn,m和n分别为 word1 和 word2 的长度。dp[i][j] 表示从 word1 的前i个字符转换到 word2 的前j个字符所需要的步骤。先给这个二维数组 dp 的第一行第一列赋值,这个很简单,因为第一行和第一列对应的总有一个字符串是空串,于是转换步骤完全是另一个字符串的长度。跟以往的 DP 题目类似,难点还是在于找出状态转移方程,可以举个例子来看,比如 word1 是 "bbc",word2 是 "abcd",可以得到 dp 数组如下:

  Ø a b c d
Ø
0 1 2 3 4
b
1 1 1 2 3
b
2 2 1 2 3
c
3 3 2 1 2

通过观察可以发现,当 word1[i] == word2[j] 时,dp[i][j] = dp[i - 1][j - 1],其他情况时,dp[i][j] 是其左,左上,上的三个值中的最小值加1,其实这里的左,上,和左上,分别对应的增加,删除,修改操作,具体可以参见解法一种的讲解部分,那么可以得到状态转移方程为:

dp[i][j] =      /    dp[i - 1][j - 1]                                                                   if word1[i - 1] == word2[j - 1]

                     min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1            else

解法二:

class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size(), n = word2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        for (int i = 0; i <= m; ++i) dp[i][0] = i;
        for (int i = 0; i <= n; ++i) dp[0][i] = i;
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1;
                }
            }
        }
        return dp[m][n];
    }
};

到此这篇关于C++实现LeetCode(72.编辑距离)的文章就介绍到这了,更多相关C++实现编辑距离内容请搜索靠谱客以前的文章或继续浏览下面的相关文章希望大家以后多多支持靠谱客!

最后

以上就是大气石头为你收集整理的C++实现LeetCode(72.编辑距离)的全部内容,希望文章能够帮你解决C++实现LeetCode(72.编辑距离)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(91)

评论列表共有 0 条评论

立即
投稿
返回
顶部