概述
功能函数
// 图像拼接 cv::Mat ImageSplicing(vector<cv::Mat> images,int type) { if (type != 0 && type != 1) type = 0; int num = images.size(); int newrow = 0; int newcol = 0; cv::Mat result; // 横向拼接 if (type == 0) { int minrow = 10000; for (int i = 0; i < num; ++i) { if (minrow > images[i].rows) minrow = images[i].rows; } newrow = minrow; for (int i = 0; i < num; ++i) { int tcol = images[i].cols*minrow / images[i].rows; int trow = newrow; cv::resize(images[i], images[i], cv::Size(tcol, trow)); newcol += images[i].cols; if (images[i].type() != images[0].type()) images[i].convertTo(images[i], images[0].type()); } result = cv::Mat(newrow, newcol, images[0].type(), cv::Scalar(255, 255, 255)); cv::Range rangerow, rangecol; int start = 0; for (int i = 0; i < num; ++i) { rangerow = cv::Range((newrow - images[i].rows) / 2, (newrow - images[i].rows) / 2 + images[i].rows); rangecol = cv::Range(start, start + images[i].cols); images[i].copyTo(result(rangerow, rangecol)); start += images[i].cols; } } // 纵向拼接 else if (type == 1) { int mincol = 10000; for (int i = 0; i < num; ++i) { if (mincol > images[i].cols) mincol = images[i].cols; } newcol = mincol; for (int i = 0; i < num; ++i) { int trow = images[i].rows*mincol / images[i].cols; int tcol = newcol; cv::resize(images[i], images[i], cv::Size(tcol, trow)); newrow += images[i].rows; if (images[i].type() != images[0].type()) images[i].convertTo(images[i], images[0].type()); } result = cv::Mat(newrow, newcol, images[0].type(), cv::Scalar(255, 255, 255)); cv::Range rangerow, rangecol; int start = 0; for (int i = 0; i < num; ++i) { rangecol= cv::Range((newcol - images[i].cols) / 2, (newcol - images[i].cols) / 2 + images[i].cols); rangerow = cv::Range(start, start + images[i].rows); images[i].copyTo(result(rangerow, rangecol)); start += images[i].rows; } } return result; }
测试代码
#include <iostream> #include <opencv2/opencv.hpp> #include <vector> using namespace std; using namespace cv; cv::Mat ImageSplicing(vector<cv::Mat> images, int type); int main() { cv::Mat src1 = imread("1.jpg"); cv::Mat src2 = imread("2.jpg"); cv::Mat src3 = imread("3.jpg"); cv::Mat src4 = imread("4.jpg"); vector<cv::Mat> images; images.push_back(src1); images.push_back(src2); images.push_back(src3); images.push_back(src4); // 0为横向 cv::Mat result1 = ImageSplicing(images, 0); // 1为纵向 cv::Mat result2 = ImageSplicing(images, 1); imwrite("result1.jpg",result1); imwrite("result2.jpg",result2); return 0; } // 图像拼接 cv::Mat ImageSplicing(vector<cv::Mat> images,int type) { if (type != 0 && type != 1) type = 0; int num = images.size(); int newrow = 0; int newcol = 0; cv::Mat result; // 横向拼接 if (type == 0) { int minrow = 10000; for (int i = 0; i < num; ++i) { if (minrow > images[i].rows) minrow = images[i].rows; } newrow = minrow; for (int i = 0; i < num; ++i) { int tcol = images[i].cols*minrow / images[i].rows; int trow = newrow; cv::resize(images[i], images[i], cv::Size(tcol, trow)); newcol += images[i].cols; if (images[i].type() != images[0].type()) images[i].convertTo(images[i], images[0].type()); } result = cv::Mat(newrow, newcol, images[0].type(), cv::Scalar(255, 255, 255)); cv::Range rangerow, rangecol; int start = 0; for (int i = 0; i < num; ++i) { rangerow = cv::Range((newrow - images[i].rows) / 2, (newrow - images[i].rows) / 2 + images[i].rows); rangecol = cv::Range(start, start + images[i].cols); images[i].copyTo(result(rangerow, rangecol)); start += images[i].cols; } } // 纵向拼接 else if (type == 1) { int mincol = 10000; for (int i = 0; i < num; ++i) { if (mincol > images[i].cols) mincol = images[i].cols; } newcol = mincol; for (int i = 0; i < num; ++i) { int trow = images[i].rows*mincol / images[i].cols; int tcol = newcol; cv::resize(images[i], images[i], cv::Size(tcol, trow)); newrow += images[i].rows; if (images[i].type() != images[0].type()) images[i].convertTo(images[i], images[0].type()); } result = cv::Mat(newrow, newcol, images[0].type(), cv::Scalar(255, 255, 255)); cv::Range rangerow, rangecol; int start = 0; for (int i = 0; i < num; ++i) { rangecol= cv::Range((newcol - images[i].cols) / 2, (newcol - images[i].cols) / 2 + images[i].cols); rangerow = cv::Range(start, start + images[i].rows); images[i].copyTo(result(rangerow, rangecol)); start += images[i].rows; } } return result; }
测试效果
以上就是使用c++实现OpenCV图像横向&纵向拼接的详细内容,更多关于c++实现OpenCV图像的资料请关注靠谱客其它相关文章!
最后
以上就是有魅力玫瑰为你收集整理的使用c++实现OpenCV图像横向&纵向拼接的全部内容,希望文章能够帮你解决使用c++实现OpenCV图像横向&纵向拼接所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复