概述
图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要。
再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办法一次将所有你要拍的景物全部拍下来,所以你对该场景从左往右依次拍了好几张图,来把你要拍的所有景物记录下来。那么我们能不能把这些图像拼接成一个大图呢?我们利用opencv就可以做到图像拼接的效果!
比如我们有对这两张图进行拼接。
从上面两张图可以看出,这两张图有比较多的重叠部分,这也是拼接的基本要求。
那么要实现图像拼接需要那几步呢?简单来说有以下几步:
- 对每幅图进行特征点提取
- 对对特征点进行匹配
- 进行图像配准
- 把图像拷贝到另一幅图像的特定位置
- 对重叠边界进行特殊处理
好吧,那就开始正式实现图像配准。
第一步就是特征点提取。现在CV领域有很多特征点的定义,比如sift、surf、harris角点、ORB都是很有名的特征因子,都可以用来做图像拼接的工作,他们各有优势。本文将使用ORB和SURF进行图像拼接,用其他方法进行拼接也是类似的。
基于SURF的图像拼接
用SIFT算法来实现图像拼接是很常用的方法,但是因为SIFT计算量很大,所以在速度要求很高的场合下不再适用。所以,它的改进方法SURF因为在速度方面有了明显的提高(速度是SIFT的3倍),所以在图像拼接领域还是大有作为。虽说SURF精确度和稳定性不及SIFT,但是其综合能力还是优越一些。下面将详细介绍拼接的主要步骤。
1.特征点提取和匹配
特征点提取和匹配的方法我在上一篇文章《OpenCV特征检测和特征匹配方法汇总》中做了详细的介绍,在这里直接使用上文所总结的SURF特征提取和特征匹配的方法。
//提取特征点 SurfFeatureDetector Detector(2000); vector<KeyPoint> keyPoint1, keyPoint2; Detector.detect(image1, keyPoint1); Detector.detect(image2, keyPoint2); //特征点描述,为下边的特征点匹配做准备 SurfDescriptorExtractor Descriptor; Mat imageDesc1, imageDesc2; Descriptor.compute(image1, keyPoint1, imageDesc1); Descriptor.compute(image2, keyPoint2, imageDesc2); FlannBasedMatcher matcher; vector<vector<DMatch> > matchePoints; vector<DMatch> GoodMatchePoints; vector<Mat> train_desc(1, imageDesc1); matcher.add(train_desc); matcher.train(); matcher.knnMatch(imageDesc2, matchePoints, 2); cout << "total match points: " << matchePoints.size() << endl; // Lowe's algorithm,获取优秀匹配点 for (int i = 0; i < matchePoints.size(); i++) { if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) { GoodMatchePoints.push_back(matchePoints[i][0]); } } Mat first_match; drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); imshow("first_match ", first_match);
2.图像配准
这样子我们就可以得到了两幅待拼接图的匹配点集,接下来我们进行图像的配准,即将两张图像转换为同一坐标下,这里我们需要使用findHomography函数来求得变换矩阵。但是需要注意的是,findHomography函数所要用到的点集是Point2f类型的,所有我们需要对我们刚得到的点集GoodMatchePoints再做一次处理,使其转换为Point2f类型的点集。
vector<Point2f> imagePoints1, imagePoints2; for (int i = 0; i<GoodMatchePoints.size(); i++) { imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt); imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); }
这样子,我们就可以拿着imagePoints1, imagePoints2去求变换矩阵了,并且实现图像配准。值得注意的是findHomography函数的参数中我们选泽了CV_RANSAC,这表明我们选择RANSAC算法继续筛选可靠地匹配点,这使得匹配点解更为精确。
//获取图像1到图像2的投影映射矩阵 尺寸为3*3 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC); ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差 //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); cout << "变换矩阵为:n" << homo << endl << endl; //输出映射矩阵 //图像配准 Mat imageTransform1, imageTransform2; warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8)); imshow("直接经过透视矩阵变换", imageTransform1); imwrite("trans1.jpg", imageTransform1);
3. 图像拷贝
拷贝的思路很简单,就是将左图直接拷贝到配准图上就可以了。
//创建拼接后的图,需提前计算图的大小 int dst_width = imageTransform1.cols; //取最右点的长度为拼接图的长度 int dst_height = image02.rows; Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0); imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows))); image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows))); imshow("b_dst", dst);
4.图像融合(去裂缝处理)
从上图可以看出,两图的拼接并不自然,原因就在于拼接图的交界处,两图因为光照色泽的原因使得两图交界处的过渡很糟糕,所以需要特定的处理解决这种不自然。这里的处理思路是加权融合,在重叠部分由前一幅图像慢慢过渡到第二幅图像,即将图像的重叠区域的像素值按一定的权值相加合成新的图像。
//优化两图的连接处,使得拼接自然 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) { int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界 double processWidth = img1.cols - start;//重叠区域的宽度 int rows = dst.rows; int cols = img1.cols; //注意,是列数*通道数 double alpha = 1;//img1中像素的权重 for (int i = 0; i < rows; i++) { uchar* p = img1.ptr<uchar>(i); //获取第i行的首地址 uchar* t = trans.ptr<uchar>(i); uchar* d = dst.ptr<uchar>(i); for (int j = start; j < cols; j++) { //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据 if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) { alpha = 1; } else { //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好 alpha = (processWidth - (j - start)) / processWidth; } d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); } } }
多尝试几张,验证拼接效果
测试一
测试二
测试三
最后给出完整的SURF算法实现的拼接代码。
#include "highgui/highgui.hpp" #include "opencv2/nonfree/nonfree.hpp" #include "opencv2/legacy/legacy.hpp" #include <iostream> using namespace cv; using namespace std; void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst); typedef struct { Point2f left_top; Point2f left_bottom; Point2f right_top; Point2f right_bottom; }four_corners_t; four_corners_t corners; void CalcCorners(const Mat& H, const Mat& src) { double v2[] = { 0, 0, 1 };//左上角 double v1[3];//变换后的坐标值 Mat V2 = Mat(3, 1, CV_64FC1, v2); //列向量 Mat V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; //左上角(0,0,1) cout << "V2: " << V2 << endl; cout << "V1: " << V1 << endl; corners.left_top.x = v1[0] / v1[2]; corners.left_top.y = v1[1] / v1[2]; //左下角(0,src.rows,1) v2[0] = 0; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.left_bottom.x = v1[0] / v1[2]; corners.left_bottom.y = v1[1] / v1[2]; //右上角(src.cols,0,1) v2[0] = src.cols; v2[1] = 0; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_top.x = v1[0] / v1[2]; corners.right_top.y = v1[1] / v1[2]; //右下角(src.cols,src.rows,1) v2[0] = src.cols; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_bottom.x = v1[0] / v1[2]; corners.right_bottom.y = v1[1] / v1[2]; } int main(int argc, char *argv[]) { Mat image01 = imread("g5.jpg", 1); //右图 Mat image02 = imread("g4.jpg", 1); //左图 imshow("p2", image01); imshow("p1", image02); //灰度图转换 Mat image1, image2; cvtColor(image01, image1, CV_RGB2GRAY); cvtColor(image02, image2, CV_RGB2GRAY); //提取特征点 SurfFeatureDetector Detector(2000); vector<KeyPoint> keyPoint1, keyPoint2; Detector.detect(image1, keyPoint1); Detector.detect(image2, keyPoint2); //特征点描述,为下边的特征点匹配做准备 SurfDescriptorExtractor Descriptor; Mat imageDesc1, imageDesc2; Descriptor.compute(image1, keyPoint1, imageDesc1); Descriptor.compute(image2, keyPoint2, imageDesc2); FlannBasedMatcher matcher; vector<vector<DMatch> > matchePoints; vector<DMatch> GoodMatchePoints; vector<Mat> train_desc(1, imageDesc1); matcher.add(train_desc); matcher.train(); matcher.knnMatch(imageDesc2, matchePoints, 2); cout << "total match points: " << matchePoints.size() << endl; // Lowe's algorithm,获取优秀匹配点 for (int i = 0; i < matchePoints.size(); i++) { if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) { GoodMatchePoints.push_back(matchePoints[i][0]); } } Mat first_match; drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); imshow("first_match ", first_match); vector<Point2f> imagePoints1, imagePoints2; for (int i = 0; i<GoodMatchePoints.size(); i++) { imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt); imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); } //获取图像1到图像2的投影映射矩阵 尺寸为3*3 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC); ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差 //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); cout << "变换矩阵为:n" << homo << endl << endl; //输出映射矩阵 //计算配准图的四个顶点坐标 CalcCorners(homo, image01); cout << "left_top:" << corners.left_top << endl; cout << "left_bottom:" << corners.left_bottom << endl; cout << "right_top:" << corners.right_top << endl; cout << "right_bottom:" << corners.right_bottom << endl; //图像配准 Mat imageTransform1, imageTransform2; warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8)); imshow("直接经过透视矩阵变换", imageTransform1); imwrite("trans1.jpg", imageTransform1); //创建拼接后的图,需提前计算图的大小 int dst_width = imageTransform1.cols; //取最右点的长度为拼接图的长度 int dst_height = image02.rows; Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0); imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows))); image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows))); imshow("b_dst", dst); OptimizeSeam(image02, imageTransform1, dst); imshow("dst", dst); imwrite("dst.jpg", dst); waitKey(); return 0; } //优化两图的连接处,使得拼接自然 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) { int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界 double processWidth = img1.cols - start;//重叠区域的宽度 int rows = dst.rows; int cols = img1.cols; //注意,是列数*通道数 double alpha = 1;//img1中像素的权重 for (int i = 0; i < rows; i++) { uchar* p = img1.ptr<uchar>(i); //获取第i行的首地址 uchar* t = trans.ptr<uchar>(i); uchar* d = dst.ptr<uchar>(i); for (int j = start; j < cols; j++) { //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据 if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) { alpha = 1; } else { //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好 alpha = (processWidth - (j - start)) / processWidth; } d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); } } }
基于ORB的图像拼接
利用ORB进行图像拼接的思路跟上面的思路基本一样,只是特征提取和特征点匹配的方式略有差异罢了。这里就不再详细介绍思路了,直接贴代码看效果。
#include "highgui/highgui.hpp" #include "opencv2/nonfree/nonfree.hpp" #include "opencv2/legacy/legacy.hpp" #include <iostream> using namespace cv; using namespace std; void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst); typedef struct { Point2f left_top; Point2f left_bottom; Point2f right_top; Point2f right_bottom; }four_corners_t; four_corners_t corners; void CalcCorners(const Mat& H, const Mat& src) { double v2[] = { 0, 0, 1 };//左上角 double v1[3];//变换后的坐标值 Mat V2 = Mat(3, 1, CV_64FC1, v2); //列向量 Mat V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; //左上角(0,0,1) cout << "V2: " << V2 << endl; cout << "V1: " << V1 << endl; corners.left_top.x = v1[0] / v1[2]; corners.left_top.y = v1[1] / v1[2]; //左下角(0,src.rows,1) v2[0] = 0; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.left_bottom.x = v1[0] / v1[2]; corners.left_bottom.y = v1[1] / v1[2]; //右上角(src.cols,0,1) v2[0] = src.cols; v2[1] = 0; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_top.x = v1[0] / v1[2]; corners.right_top.y = v1[1] / v1[2]; //右下角(src.cols,src.rows,1) v2[0] = src.cols; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_bottom.x = v1[0] / v1[2]; corners.right_bottom.y = v1[1] / v1[2]; } int main(int argc, char *argv[]) { Mat image01 = imread("t1.jpg", 1); //右图 Mat image02 = imread("t2.jpg", 1); //左图 imshow("p2", image01); imshow("p1", image02); //灰度图转换 Mat image1, image2; cvtColor(image01, image1, CV_RGB2GRAY); cvtColor(image02, image2, CV_RGB2GRAY); //提取特征点 OrbFeatureDetector surfDetector(3000); vector<KeyPoint> keyPoint1, keyPoint2; surfDetector.detect(image1, keyPoint1); surfDetector.detect(image2, keyPoint2); //特征点描述,为下边的特征点匹配做准备 OrbDescriptorExtractor SurfDescriptor; Mat imageDesc1, imageDesc2; SurfDescriptor.compute(image1, keyPoint1, imageDesc1); SurfDescriptor.compute(image2, keyPoint2, imageDesc2); flann::Index flannIndex(imageDesc1, flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING); vector<DMatch> GoodMatchePoints; Mat macthIndex(imageDesc2.rows, 2, CV_32SC1), matchDistance(imageDesc2.rows, 2, CV_32FC1); flannIndex.knnSearch(imageDesc2, macthIndex, matchDistance, 2, flann::SearchParams()); // Lowe's algorithm,获取优秀匹配点 for (int i = 0; i < matchDistance.rows; i++) { if (matchDistance.at<float>(i, 0) < 0.4 * matchDistance.at<float>(i, 1)) { DMatch dmatches(i, macthIndex.at<int>(i, 0), matchDistance.at<float>(i, 0)); GoodMatchePoints.push_back(dmatches); } } Mat first_match; drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); imshow("first_match ", first_match); vector<Point2f> imagePoints1, imagePoints2; for (int i = 0; i<GoodMatchePoints.size(); i++) { imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt); imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); } //获取图像1到图像2的投影映射矩阵 尺寸为3*3 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC); ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差 //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); cout << "变换矩阵为:n" << homo << endl << endl; //输出映射矩阵 //计算配准图的四个顶点坐标 CalcCorners(homo, image01); cout << "left_top:" << corners.left_top << endl; cout << "left_bottom:" << corners.left_bottom << endl; cout << "right_top:" << corners.right_top << endl; cout << "right_bottom:" << corners.right_bottom << endl; //图像配准 Mat imageTransform1, imageTransform2; warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8)); imshow("直接经过透视矩阵变换", imageTransform1); imwrite("trans1.jpg", imageTransform1); //创建拼接后的图,需提前计算图的大小 int dst_width = imageTransform1.cols; //取最右点的长度为拼接图的长度 int dst_height = image02.rows; Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0); imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows))); image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows))); imshow("b_dst", dst); OptimizeSeam(image02, imageTransform1, dst); imshow("dst", dst); imwrite("dst.jpg", dst); waitKey(); return 0; } //优化两图的连接处,使得拼接自然 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) { int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界 double processWidth = img1.cols - start;//重叠区域的宽度 int rows = dst.rows; int cols = img1.cols; //注意,是列数*通道数 double alpha = 1;//img1中像素的权重 for (int i = 0; i < rows; i++) { uchar* p = img1.ptr<uchar>(i); //获取第i行的首地址 uchar* t = trans.ptr<uchar>(i); uchar* d = dst.ptr<uchar>(i); for (int j = start; j < cols; j++) { //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据 if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) { alpha = 1; } else { //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好 alpha = (processWidth - (j - start)) / processWidth; } d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); } } }
看一看拼接效果,我觉得还是不错的。
看一下这一组图片,这组图片产生了鬼影,为什么?因为两幅图中的人物走动了啊!所以要做图像拼接,尽量保证使用的是静态图片,不要加入一些动态因素干扰拼接。
opencv自带的拼接算法stitch
opencv其实自己就有实现图像拼接的算法,当然效果也是相当好的,但是因为其实现很复杂,而且代码量很庞大,其实在一些小应用下的拼接有点杀鸡用牛刀的感觉。最近在阅读sticth源码时,发现其中有几个很有意思的地方。
1.opencv stitch选择的特征检测方式
一直很好奇opencv stitch算法到底选用了哪个算法作为其特征检测方式,是ORB,SIFT还是SURF?读源码终于看到答案。
#ifdef HAVE_OPENCV_NONFREE stitcher.setFeaturesFinder(new detail::SurfFeaturesFinder()); #else stitcher.setFeaturesFinder(new detail::OrbFeaturesFinder()); #endif
在源码createDefault函数中(默认设置),第一选择是SURF,第二选择才是ORB(没有NONFREE模块才选),所以既然大牛们这么选择,必然是经过综合考虑的,所以应该SURF算法在图像拼接有着更优秀的效果。
2.opencv stitch获取匹配点的方式
以下代码是opencv stitch源码中的特征点提取部分,作者使用了两次特征点提取的思路:先对图一进行特征点提取和筛选匹配(1->2),再对图二进行特征点的提取和匹配(2->1),这跟我们平时的一次提取的思路不同,这种二次提取的思路可以保证更多的匹配点被选中,匹配点越多,findHomography求出的变换越准确。这个思路值得借鉴。
matches_info.matches.clear(); Ptr<flann::IndexParams> indexParams = new flann::KDTreeIndexParams(); Ptr<flann::SearchParams> searchParams = new flann::SearchParams(); if (features2.descriptors.depth() == CV_8U) { indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH); searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH); } FlannBasedMatcher matcher(indexParams, searchParams); vector< vector<DMatch> > pair_matches; MatchesSet matches; // Find 1->2 matches matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; if (m0.distance < (1.f - match_conf_) * m1.distance) { matches_info.matches.push_back(m0); matches.insert(make_pair(m0.queryIdx, m0.trainIdx)); } } LOG("n1->2 matches: " << matches_info.matches.size() << endl); // Find 2->1 matches pair_matches.clear(); matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; if (m0.distance < (1.f - match_conf_) * m1.distance) if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end()) matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); } LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl);
这里我仿照opencv源码二次提取特征点的思路对我原有拼接代码进行改写,实验证明获取的匹配点确实较一次提取要多。
//提取特征点 SiftFeatureDetector Detector(1000); // 海塞矩阵阈值,在这里调整精度,值越大点越少,越精准 vector<KeyPoint> keyPoint1, keyPoint2; Detector.detect(image1, keyPoint1); Detector.detect(image2, keyPoint2); //特征点描述,为下边的特征点匹配做准备 SiftDescriptorExtractor Descriptor; Mat imageDesc1, imageDesc2; Descriptor.compute(image1, keyPoint1, imageDesc1); Descriptor.compute(image2, keyPoint2, imageDesc2); FlannBasedMatcher matcher; vector<vector<DMatch> > matchePoints; vector<DMatch> GoodMatchePoints; MatchesSet matches; vector<Mat> train_desc(1, imageDesc1); matcher.add(train_desc); matcher.train(); matcher.knnMatch(imageDesc2, matchePoints, 2); // Lowe's algorithm,获取优秀匹配点 for (int i = 0; i < matchePoints.size(); i++) { if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) { GoodMatchePoints.push_back(matchePoints[i][0]); matches.insert(make_pair(matchePoints[i][0].queryIdx, matchePoints[i][0].trainIdx)); } } cout<<"n1->2 matches: " << GoodMatchePoints.size() << endl; #if 1 FlannBasedMatcher matcher2; matchePoints.clear(); vector<Mat> train_desc2(1, imageDesc2); matcher2.add(train_desc2); matcher2.train(); matcher2.knnMatch(imageDesc1, matchePoints, 2); // Lowe's algorithm,获取优秀匹配点 for (int i = 0; i < matchePoints.size(); i++) { if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) { if (matches.find(make_pair(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx)) == matches.end()) { GoodMatchePoints.push_back(DMatch(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx, matchePoints[i][0].distance)); } } } cout<<"1->2 & 2->1 matches: " << GoodMatchePoints.size() << endl; #endif
最后再看一下opencv stitch的拼接效果吧~速度虽然比较慢,但是效果还是很好的。
#include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/stitching/stitcher.hpp> using namespace std; using namespace cv; bool try_use_gpu = false; vector<Mat> imgs; string result_name = "dst1.jpg"; int main(int argc, char * argv[]) { Mat img1 = imread("34.jpg"); Mat img2 = imread("35.jpg"); imshow("p1", img1); imshow("p2", img2); if (img1.empty() || img2.empty()) { cout << "Can't read image" << endl; return -1; } imgs.push_back(img1); imgs.push_back(img2); Stitcher stitcher = Stitcher::createDefault(try_use_gpu); // 使用stitch函数进行拼接 Mat pano; Stitcher::Status status = stitcher.stitch(imgs, pano); if (status != Stitcher::OK) { cout << "Can't stitch images, error code = " << int(status) << endl; return -1; } imwrite(result_name, pano); Mat pano2 = pano.clone(); // 显示源图像,和结果图像 imshow("全景图像", pano); if (waitKey() == 27) return 0; }
到此这篇关于OpenCV 图像拼接和图像融合的实现的文章就介绍到这了,更多相关OpenCV 图像拼接和图像融合内容请搜索靠谱客以前的文章或继续浏览下面的相关文章希望大家以后多多支持靠谱客!
最后
以上就是清爽铃铛为你收集整理的OpenCV 图像拼接和图像融合的实现的全部内容,希望文章能够帮你解决OpenCV 图像拼接和图像融合的实现所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复