我是靠谱客的博主 坚强玉米,最近开发中收集的这篇文章主要介绍R语言柱状图排序和x轴上的标签倾斜操作,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

R语言做柱状图大致有两种方法, 一种是基础库里面的 barplot函数, 另一个就是ggplot2包里面的geom_bar

此处用的是字符变量 统计其各频数,然后做出其柱状图。(横轴上的标签显示不全)

t <- sort(table(dat1$L), decreasing = TRUE)                      #将频数表进行排序
r <- barplot(t, col = "blue",
       main = "柱状图", ylim = c(0,12), names.arg = dimnames(t)     #画字符变量的柱状图 
tmp <- as.vector(t)                                           #将频数变成一个向量
text(r, tmp, label = tmp, pos = 3)                                #加柱子上面的标签

或用ggplot2包 (目前仍没有给柱子上加数字标签)

library(ggplot2)                                         #加载ggplot2包                      
reorder_size <- function(x) {
 factor(x, levels = names(sort(table(x))))
}                                                     #自定义函数,获取因子型变量的因子类型
p <- ggplot(dat3, aes(reorder_size(LAI))) +                   #用因子变量做基础底图,也可直接用reorder排序
 geom_bar(fill = "blue") +                                        #画柱状图
 theme(axis.text.x = element_text(angle = 45, hjust = 0.5, vjust = 0.5)) +   #让横轴上的标签倾斜45度
 xlab("柱状图")                                                #给x轴加标签

补充:R 语言条形图,解决x轴文字排序问题

数据结果的图形展示,R代码,《R数据科学》是个好东西

数据格式如下:

term category pval
neutrophil chemotaxis biological_process 1.68E-09
innate immune response biological_process 3.35E-09
complement activation, classical pathway biological_process 1.14E-08
negative regulation of endopeptidase activity biological_process 4.43E-08
collagen fibril organization biological_process 4.43E-08
blood coagulation biological_process 1.29E-07
proteolysis involved in cellular protein catabolic process biological_process 1.56E-07
proteolysis biological_process 1.13E-06
leukocyte migration involved in inflammatory response biological_process 1.47E-06
peptide cross-linking biological_process 1.47E-06
extracellular space cellular_component 8.75E-40
collagen-containing extracellular matrix cellular_component 2.08E-26
extracellular matrix cellular_component 5.72E-11
lysosome cellular_component 6.09E-10
extracellular region cellular_component 6.58E-10
collagen trimer cellular_component 1.68E-09
cell surface cellular_component 2.80E-08
extracellular exosome cellular_component 2.34E-07
extrinsic component of external side of plasma membrane cellular_component 1.47E-06
sarcolemma cellular_component 3.16E-06

作图要求:x轴为term,颜色按categroy分类、并且pval由小到大排序

代码:

#openxlsx读入为data.frame
class(data)
#转换
library(tidyverse)
godata<-as_tibble(godata)
class(godata)
#原始数据筛选(category,term,pval)散列,按照category,-log10(pval)排序
data<-godata%>%select(category,term,pval)%>%arrange(category,desc(-log10(pval)))
#画图时改变geom_bar的自动排序
data$term<-factor(data$term,levels = unique(data$term),ordered = T)
#作图
ggplot(data)+
 geom_bar(aes(x=term,y=-log10(pval),fill=category),stat = 'identity')+
 coord_flip()

结果:

以上为个人经验,希望能给大家一个参考,也希望大家多多支持靠谱客。如有错误或未考虑完全的地方,望不吝赐教。

最后

以上就是坚强玉米为你收集整理的R语言柱状图排序和x轴上的标签倾斜操作的全部内容,希望文章能够帮你解决R语言柱状图排序和x轴上的标签倾斜操作所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(107)

评论列表共有 0 条评论

立即
投稿
返回
顶部