概述
数据处理中经常遇到表连接问题,本次介绍R语言中三种左连接方法,这三种是等价的,不过会有时间快慢问题,斟酌使用。
法一:
> data0 <- merge(a,c,all.x=TRUE,by='CELLPHONE')
法二:
> data1 <- sqldf('select a.*,b.* from a left join c on a.CELLPHONE=c.CELLPHONE')
法三:
> data2 <- c[a,on='CELLPHONE']
注意:第三种方法的顺序不能写反了。
补充:R语言中的inner_join, full_join, left_join, right_join
在R for Data Science中,作者用了非常直观的例子解释了上面的四个概念。说明如下:
我们的数据集是这样的:
x <- tribble( ~key, ~val_x, 1, "x1", 2, "x2", 3, "x3" ) y <- tribble( ~key, ~val_y, 1, "y1", 2, "y2", 4, "y3" )
可以看出,x与y的key都有1,2,但是x的key里面有3,y的key里面有4.
下面我们来看这四个概念:
1. inner_join
x %>% inner_join(y, by = "key")
其结果是
key val_x val_y <dbl> <chr> <chr> 1 x1 y1 2 x2 y2
可以看出,此时基于key的连接只保留了共同的key值1与2对应的数据;
2. full_join
x %>% full_join(y, by = "key")
其结果是
key val_x val_y <dbl> <chr> <chr> 1 x1 y1 2 x2 y2 3 x3 NA 4 NA y3
可以看出,此时基于key的连接保留了所有key值对应的数据,当相应的值不存在的时候,用NA代替;
3. left_join
x %>% left_join(y, by = "key")
此时的结果为
<dbl> <chr> <chr> 1 x1 y1 2 x2 y2 3 x3 NA
可以看出, 此时基于key的连接只保留了x对应的key值的数据,当相应的值不存在的时候,用NA代替;
4. right_join
x %>% right_join(y, by = "key")
此时的结果为
key val_x val_y <dbl> <chr> <chr> 1 x1 y1 2 x2 y2 4 NA y3
可以看出,此时基于key的连接只保留了y对应的key值的数据,当相应的值不存在的时候,用NA代替。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持靠谱客。如有错误或未考虑完全的地方,望不吝赐教。
最后
以上就是沉默花生为你收集整理的R语言之左连接的三种实现操作的全部内容,希望文章能够帮你解决R语言之左连接的三种实现操作所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复