我是靠谱客的博主 爱笑白昼,最近开发中收集的这篇文章主要介绍详解Android Handler机制和Looper Handler Message关系,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

概述

我们就从以下六个问题来探讨Handler 机制和Looper、Handler、Message之前的关系?

1.一个线程有几个Handler?

2.一个线程有几个Looper?如何保证?

3.Handler内存泄漏原因?为什么其他的内部类没有说过这个问题?

4.为何主线程可以new Handler?如果在想要在子线程中new Handler 要做些什么准备?

5.子线程中维护的Looper,消息队列无消息的时候的处理方案是什么?有什么用?

6.Looper死循环为什么不会导致应用卡死?

一、源码解析

1.Looper

对于Looper主要是prepare()和loop()两个方法

首先看prepare()方法

private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

可以看出sThreadLocal是一个ThreadLocal对象,ThreadLocal 并不是线程,而是一个线程内部的存储类,可以在线程内存储数据.在第5行可以看到,将一个Looper实例放入了

ThreadLocal,并且在第2~4行判断了sThreadLocal是否为空,否则抛出异常.这也Looper.prepare()方法不能被调用两次.这也对应了上面的第二个问题.

下面来看Looper的构造方法:

private Looper(boolean quitAllowed) {
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}

在Looper的构造方法中创建了一个MessageQueue(消息队列)

然后我们在看loop()方法:

public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        // Allow overriding a threshold with a system prop. e.g.
        // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
        final int thresholdOverride =
                SystemProperties.getInt("log.looper."
                        + Process.myUid() + "."
                        + Thread.currentThread().getName()
                        + ".slow", 0);

        boolean slowDeliveryDetected = false;

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long traceTag = me.mTraceTag;
            long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
            long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
            if (thresholdOverride > 0) {
                slowDispatchThresholdMs = thresholdOverride;
                slowDeliveryThresholdMs = thresholdOverride;
            }
            final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
            final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);

            final boolean needStartTime = logSlowDelivery || logSlowDispatch;
            final boolean needEndTime = logSlowDispatch;

            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }

            final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
            final long dispatchEnd;
            try {
                msg.target.dispatchMessage(msg);
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (logSlowDelivery) {
                if (slowDeliveryDetected) {
                    if ((dispatchStart - msg.when) <= 10) {
                        Slog.w(TAG, "Drained");
                        slowDeliveryDetected = false;
                    }
                } else {
                    if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                            msg)) {
                        // Once we write a slow delivery log, suppress until the queue drains.
                        slowDeliveryDetected = true;
                    }
                }
            }
            if (logSlowDispatch) {
                showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

第2行:final Looper me = myLooper();

public static @Nullable Looper myLooper() {
    return sThreadLocal.get();
}

第6行:拿到改Looper实例中的mQueue(消息队列)

第23~98行:进入了一个死循环,

第24行:Message msg = queue.next(); next()方法里会一直去取消息,然后会加锁,就会一直堵塞进程,这也就是我们经常说的Looper死循环为什么不会导致死机.在这next()源码就不粘贴了,后面会说这个为什么不会死机的问题.

第57行: 调用msg.target.dispatchMessage(msg); 把消息交给msg的target的dispatchMessage()方法去处理.msg的target是什么呢?其实就是handler对象,下面会分析.

第97行:释放消息占用的资源

Looper的主要作用:

与当前线程绑定,保证一个线程只会有一个Looper实例,同时一个Looper实例也是只有一个MessageQueue.

loop()方法,不断从MessageQueue中去取消息,交给消息的target属性的dispatchMessage()去处理.

2.Handler

使用Handler之前,我们都是初始化一个实例,比如用于更新UI线程,我们会在声明的时候直接初始化,或者在onCreate中初始化Handler实例.所以我们首先看Handler的构造方法,

看其如何与MessageQueue联系上的,它的子线程中发送的消息(一般发送的消息都是在非UI线程)怎么发送到MessageQueue中的.

public Handler(Callback callback) {
        this(callback, false);
    }

    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

第15行:通过Looper.myLooper()获取了当前线程保存的Looper实例,然后在19行又获取了这个Looper实例中保存的MessageQueue(消息队列)

这样就保证了handler的实例与我们Looper实例中MessageQueue关联上了,

然后我们再看最常用的sendMessage方法:

public final boolean sendMessage(Message msg)
{
    return sendMessageDelayed(msg, 0);
}
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
    Message msg = Message.obtain();
    msg.what = what;
    return sendMessageDelayed(msg, delayMillis);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

看到最后我们发现最后调用了sendMessageAtTime,在此方法内部有直接获取MessageQueue然后调用了enqueueMessage方法,我们再来看此方法:

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

enqueueMessage中首先为meg.target赋值为this, 在Looper的loop()方法会取出每个msg然后交给msg,target.dispatchMessage(msg)去处理消息,也就是把当前的Handler作为

msg的target属性,最终会调用queue的enqueueMessage的方法,也就是说Handler发出饿消息,最终会保存到消息队列中去.

现在已经很清楚了:Looper会调用Prepare()和loop()方法,在当前执行的线程中保存一个Looper实例,这个实例会保存一个MessageQueue对象,然后在当前的线程进入一个

无限循环中去,不断地从MessageQueue中读取Handler发来的消息.然后在回调创建这个消息的handler的dispatchMessage()方法.下面看一下dispathMessage方法:

public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

第10行: 调用了handleMessage()方法,下面我们看这个方法:

/**
* Subclasses must implement this to receive messages.
*/
public void handleMessage(Message msg) {
}

可以看到这个是一个空方法,为什么呢?因为消息的最终回调是由我们控制的,我们在创建handler的时候都是重写handleMessage方法,然后根据msg.what进行消息处理的

例如:

private Handler mHandler = new Handler()
    {
        public void handleMessage(android.os.Message msg)
        {
            switch (msg.what)
            {
            case value:

                break;

            default:
                break;
            }
        };
    };

整个流程已经说完了,总结一哈:

1.首先Looper,prepare()方法在本线程中保存了一个Looper实例,然后该实例中保存一个MessageQueue对象;因为Looper.prepare()在一个线程中只能调用一次,

所以MessageQueue在一个线程中只会存在一个.

2.Looper.loop()会让当前的线程进入一个无限循环,不断地从MessageQueue的实例中读取消息,然后回调,msg.target.dispatchMessage(msg)方法.

3.Handler的构造方法,会首先得到当前线程中保存的Looper实例,进而与Looper实例的MessageQueue相关联.

4.Handler的sendMessage()方法,会给msg的target赋值为handler自身,然后加入MessageQueue中.

5.在构造Handler实例时,我们会重写handlerMessage方法.也就是msg.target,dispatchMessage(msg)最终调用的方法.

回过头来来看我们的之前的六个问题:

二、分析问题

1.一个线程有几个Handler?

我相信大家应该都使用过Handler,所以这个问题的答案:多个

这个问题没有什么好分析的,大家也亲身使用过!

2.一个线程有几个Looper?如何保证?

一个线程能有多个Handler,那么会产生多少个Looper呢? 答案: 1个

为什么?如何保证呢?

在源码分析中,可以看到sTheadLocal会实例一个Looper,如果在同一个线程中再次调用Looper.prepare方法,会抛出异常:Only one Looper may be created per thread

说明了同一个线程只能实例Looper对象.

3.Handler内存泄漏原因?

为什么其他的内部类没有说过这个问题?

Handler内存泄漏原因? 答案: 内部类引用外部类方法

private Handler mHandler =new Handler(){
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
            switch (msg.what){
                case 0:
                    setLog();
                    break;
                default:
                    break;
            }

        }
    };

 private void setLog() {
        Log.d(TAG,"This is Log!");
    }

    @Override
    public void onClick(View v) {
        switch (v.getId()){
            case R.id.create_xml:
                Log.d(TAG,"create_xml");
                mHandler.sendMessageDelayed(0,1000*60);
                break;
             default:
                break;
    }

创建一个匿名内部类Handler, 这时候我发延迟sendMessageDelayed()执行setLog()方法,但这个时候我如果强行关闭Activity,这个时候Activity会被销毁,但是这个Handler得不到

释放,因为还要延迟一分钟才能执行setLog()方法,这个时候就会造成内存泄漏.

其他的内部类为什么不会?

很简单,比如ListView的ViewHolder这个常用的匿名内部类,如果当主Activity销毁,这个时候ViewHolder内部类,也是直接被销毁的!所以不会出现内存泄漏问题!

4.为何主线程可以new Handler?

如果在想要在子线程中new Handler 要做些什么准备?

由前面的讲解,可以看出new Handler的条件是需要一个Looper对象,而Looper对象需要调用两个方法prepare()和loop()方法,大家可以看下面主线程的Main方法

public static void main(String[] args) {
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");

        // Install selective syscall interception
        AndroidOs.install();

        // CloseGuard defaults to true and can be quite spammy.  We
        // disable it here, but selectively enable it later (via
        // StrictMode) on debug builds, but using DropBox, not logs.
        CloseGuard.setEnabled(false);

        Environment.initForCurrentUser();

        // Make sure TrustedCertificateStore looks in the right place for CA certificates
        final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
        TrustedCertificateStore.setDefaultUserDirectory(configDir);

        Process.setArgV0("<pre-initialized>");

        Looper.prepareMainLooper();

        // Find the value for {@link #PROC_START_SEQ_IDENT} if provided on the command line.
        // It will be in the format "seq=114"
        long startSeq = 0;
        if (args != null) {
            for (int i = args.length - 1; i >= 0; --i) {
                if (args[i] != null && args[i].startsWith(PROC_START_SEQ_IDENT)) {
                    startSeq = Long.parseLong(
                            args[i].substring(PROC_START_SEQ_IDENT.length()));
                }
            }
        }
        ActivityThread thread = new ActivityThread();
        thread.attach(false, startSeq);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

这个Main方法,是所有的程序启动之前,都要走的这个main方法

第20行:调用了一个Looper.prepareMainLooper();

第47行:调用了一个Looper.loop();

而Looper.prepareMainLooper()源码:

public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

第2行:可以看到调用了Looper里的prepare()方法;

所以说可以在一个主线程中直接new Handler

那如果在一个子线程new Handler的话,需要做什么准备?

当然是要需要:调用一个Looper.prepar()和Looper.loop()方法了。

5.子线程中维护的Looper,消息队列无消息的时候的处理方案是什么?有什么用?

在子线程使用Handler时,调用Looper.loop()方法,在上面的源码中,可以看到【Message msg = queue.next(); // might block】会一直卡死在这个地方?那我们怎么解决这个问题呢?

在Looper方法中有个QuitSafely()方法,这个方法会干掉MessageQueue(消息队列)中的所有消息而释放内存和释放线程。

这个时候回到第四个问题,在子线程中创建Handler,需要准备什么?

调用三个方法:

  • looper.prepare()
  • Looper.loop()
  • handler.getLooper().quit();

6.Looper死循环为什么不会导致应用卡死?

了解这个问题,首先我们要了解,什么情况下才会导致应用卡死?

卡死也就会会出现应用无响应,也就是我们常说的ANR,出现ANR问题有两种:

  • 在5秒内没有响应输入事件,如:按键按下,屏幕触摸
  • BroadcastReceiver在10秒内没有执行完毕

了解这个了我们就会发现,在导致Looper死循环的问题是Message msg = queue.next()这个方法,看了next()源码,简单的可以说这个程序是在睡眠,从而在next()方法中调用Wake()方法可以唤醒程序,从而不会导致应用出现ANR问题.

以上就是详解Android Handler机制和Looper Handler Message关系的详细内容,更多关于Android Handler机制和Looper Handler Message关系的资料请关注靠谱客其它相关文章!

最后

以上就是爱笑白昼为你收集整理的详解Android Handler机制和Looper Handler Message关系的全部内容,希望文章能够帮你解决详解Android Handler机制和Looper Handler Message关系所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(83)

评论列表共有 0 条评论

立即
投稿
返回
顶部