我是靠谱客的博主 深情手套,最近开发中收集的这篇文章主要介绍victoriaMetrics库布隆过滤器初始化及使用详解,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

代码路径:/lib/bloomfilter

概述

victoriaMetrics的vmstorage组件会接收上游传递过来的指标,在现实场景中,指标或瞬时指标的数量级可能会非常恐怖,如果不限制缓存的大小,有可能会由于cache miss而导致出现过高的slow insert。

为此,vmstorage提供了两个参数:maxHourlySeriesmaxDailySeries,用于限制每小时/每天添加到缓存的唯一序列。

唯一序列指表示唯一的时间序列,如metrics{label1="value1",label2="value2"}属于一个时间序列,但多条不同值的metrics{label1="value1",label2="value2"}属于同一条时间序列。victoriaMetrics使用如下方式来获取时序的唯一标识:

func getLabelsHash(labels []prompbmarshal.Label) uint64 {
	bb := labelsHashBufPool.Get()
	b := bb.B[:0]
	for _, label := range labels {
		b = append(b, label.Name...)
		b = append(b, label.Value...)
	}
	h := xxhash.Sum64(b)
	bb.B = b
	labelsHashBufPool.Put(bb)
	return h
}

限速器的初始化

victoriaMetrics使用了一个类似限速器的概念,限制每小时/每天新增的唯一序列,但与普通的限速器不同的是,它需要在序列级别进行限制,即判断某个序列是否是新的唯一序列,如果是,则需要进一步判断一段时间内缓存中新的时序数目是否超过限制,而不是简单地在请求层面进行限制。

hourlySeriesLimiter = bloomfilter.NewLimiter(*maxHourlySeries, time.Hour)
dailySeriesLimiter = bloomfilter.NewLimiter(*maxDailySeries, 24*time.Hour)

下面是新建限速器的函数,传入一个最大(序列)值,以及一个刷新时间。该函数中会:

  • 初始化一个限速器,限速器的最大元素个数为maxItems
  • 则启用了一个goroutine,当时间达到refreshInterval时会重置限速器
func NewLimiter(maxItems int, refreshInterval time.Duration) *Limiter {
	l := &Limiter{
		maxItems: maxItems,
		stopCh:   make(chan struct{}),
	}
	l.v.Store(newLimiter(maxItems)) //1
	l.wg.Add(1)
	go func() {
		defer l.wg.Done()
		t := time.NewTicker(refreshInterval)
		defer t.Stop()
		for {
			select {
			case <-t.C:
				l.v.Store(newLimiter(maxItems))//2
			case <-l.stopCh:
				return
			}
		}
	}()
	return l
}

限速器只有一个核心函数Add,当vmstorage接收到一个指标之后,会(通过getLabelsHash计算该指标的唯一标识(h),然后调用下面的Add函数来判断该唯一标识是否存在于缓存中。

如果当前存储的元素个数大于等于允许的最大元素,则通过过滤器判断缓存中是否已经存在该元素;否则将该元素直接加入过滤器中,后续允许将该元素加入到缓存中。

func (l *Limiter) Add(h uint64) bool {
	lm := l.v.Load().(*limiter)
	return lm.Add(h)
}
func (l *limiter) Add(h uint64) bool {
	currentItems := atomic.LoadUint64(&l.currentItems)
	if currentItems >= uint64(l.f.maxItems) {
		return l.f.Has(h)
	}
	if l.f.Add(h) {
		atomic.AddUint64(&l.currentItems, 1)
	}
	return true
}

上面的过滤器采用的是布隆过滤器,核心函数为HasAdd,分别用于判断某个元素是否存在于过滤器中,以及将元素添加到布隆过滤器中。

过滤器的初始化函数如下,bitsPerItem是个常量,值为16。bitsCount统计了过滤器中的总bit数,每个bit表示某个值的存在性。bits以64bit为单位的(后续称之为slot,目的是为了在bitsCount中快速检索目标bit)。计算bits时加上63的原因是为了四舍五入向上取值,比如当maxItems=1时至少需要1个unit64的slot。

func newFilter(maxItems int) *filter {
	bitsCount := maxItems * bitsPerItem
	bits := make([]uint64, (bitsCount+63)/64)
	return &filter{
		maxItems: maxItems,
		bits:     bits,
	}
}

为什么bitsPerItem为16?这篇文章给出了如何计算布隆过滤器的大小。在本代码中,k为4(hashesCount),期望的漏失率为0.003(可以从官方的filter_test.go中看出),则要求总存储和总元素的比例为15,为了方便检索slot(64bit,为16的倍数),将之设置为16。

	if p > 0.003 {
		t.Fatalf("too big false hits share for maxItems=%d: %.5f, falseHits: %d", maxItems, p, falseHits)
	}

下面是过滤器的Add操作,目的是在过滤器中添加某个元素。Add函数中没有使用多个哈希函数来计算元素的哈希值,转而改变同一个元素的值,然后对相应的值应用相同的哈希函数,元素改变的次数受hashesCount的限制。

  • 获取过滤器的完整存储,并转换为以bit单位
  • 将元素h转换为byte数组,便于xxhash.Sum64计算
  • 后续将执行hashesCount次哈希,降低漏失率
  • 计算元素h的哈希
  • 递增元素h,为下一次哈希做准备
  • 取余法获取元素的bit范围
  • 获取元素所在的slot(即uint64大小的bit范围)
  • 获取元素所在的slot中的bit位,该位为1表示该元素存在,为0表示该元素不存在
  • 获取元素所在bit位的掩码
  • 加载元素所在的slot的数值
  • 如果w & mask结果为0,说明该元素不存在,
  • 将元素所在的slot(w)中的元素所在的bit位(mask)置为1,表示添加了该元素
  • 由于Add函数可以并发访问,因此bits[i]有可能被其他操作修改,因此需要通过重新加载(14)并通过循环来在bits[i]中设置该元素的存在性
func (f *filter) Add(h uint64) bool {
	bits := f.bits
	maxBits := uint64(len(bits)) * 64 //1
	bp := (*[8]byte)(unsafe.Pointer(&h))//2
	b := bp[:]
	isNew := false
	for i := 0; i < hashesCount; i++ {//3
		hi := xxhash.Sum64(b)//4
		h++ //5
		idx := hi % maxBits //6
		i := idx / 64 //7
		j := idx % 64 //8
		mask := uint64(1) << j //9
		w := atomic.LoadUint64(&bits[i])//10
		for (w & mask) == 0 {//11
			wNew := w | mask //12
			if atomic.CompareAndSwapUint64(&bits[i], w, wNew) {//13
				isNew = true//14
				break
			}
			w = atomic.LoadUint64(&bits[i])//14
		}
	}
	return isNew
}

看懂了Add函数,Has就相当简单了,它只是Add函数的缩减版,无需设置bits[i]

func (f *filter) Has(h uint64) bool {
	bits := f.bits
	maxBits := uint64(len(bits)) * 64
	bp := (*[8]byte)(unsafe.Pointer(&h))
	b := bp[:]
	for i := 0; i < hashesCount; i++ {
		hi := xxhash.Sum64(b)
		h++
		idx := hi % maxBits
		i := idx / 64
		j := idx % 64
		mask := uint64(1) << j
		w := atomic.LoadUint64(&bits[i])
		if (w & mask) == 0 {
			return false
		}
	}
	return true
}

总结

由于victoriaMetrics的过滤器采用的是布隆过滤器,因此它的限速并不精准,在源码条件下, 大约有3%的偏差。但同样地,由于采用了布隆过滤器,降低了所需的内存以及相关计算资源。此外victoriaMetrics的过滤器实现了并发访问。

在大流量场景中,如果需要对请求进行相对精准的过滤,可以考虑使用布隆过滤器,降低所需要的资源,但前提是过滤的结果能够忍受一定程度的漏失率。

以上就是victoriaMetrics库布隆过滤器初始化及使用详解的详细内容,更多关于victoriaMetrics库布隆过滤器的资料请关注靠谱客其它相关文章!

最后

以上就是深情手套为你收集整理的victoriaMetrics库布隆过滤器初始化及使用详解的全部内容,希望文章能够帮你解决victoriaMetrics库布隆过滤器初始化及使用详解所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(76)

评论列表共有 0 条评论

立即
投稿
返回
顶部