No. | 题目 | 博客时间 | 关键字 | 备注 | 优化目标 |
1 | Enhancements of V2X Communication in Support of Cooperative Autonomous Driving | 20-03-06 | 自动驾驶 V2X标准 | | |
2 | Vehicle-to-Everything (v2x) Services Supported by LTE-based Systems and 5g | 20-03-14 | V2X标准 LTE-V2X | | |
3 | User-Centric Ultra-Dense Networks for 5G: Challenges , Methodologies, and Directions | 20-03-21 | 接入管理 UUDN | | |
4 | Kinematic Information Aided User-Centric 5G Vehicular Networks | 20-03-19 | 接入管理 UUDN | | SINR尽可能大(低分组丢失率) 排队延迟尽可能小(低拥塞率) |
5 | Achieving URLLC: Challenges and Envisioned System Enhancements | 20-03-25 | URLLC | 综述型 URLLC的解决方案 缩短TTI的缺点 | |
6 | Ultra Reliable, Low Latency V2I Wireless Communications with Edge Computing | 20-03-27 | V2I 可靠性 资源管理 | 联合优化连接与带宽分配,给出延迟指标 劳动力市场匹配 | |
7 | Machine Learning for Vehicular Networks:Recent Advances and Application Examples | 20-03-31 | 车联网 机器学习 综述 | 无线资源管理的窘境 开放式问题中有一个:多主体之间信息交换的时间有待考虑 | |
8 | Toward Intelligent Vehicular Networks: A Machine Learning Framework | 20-04-02 | 车联网 机器学习 综述 | 车联网的高移动性有啥挑战 使用ML的动机 给了基于ML的资源管理参考文献 | |
9 | Spectrum Sharing in Vehicular Networks Based on Multi-Agent Reinforcement Learning | 20-04-06 | V2I容量 & 2V可靠性 资源分配 强化学习 | | |
10 | Multi-User-Centric Virtual Cell Operation for V2X Communications in 5G Networks | 20-04-08 | VC(UUDN) max 服务用户数 功率控制 | | |
11 | Trajectory Data Driven V2V/V2I Mode Switching and Bandwidth Allocation for Vehicle Networks | 20-05-02 | V2I辅助的V2V CSI 资源分配 | | 最大化BS覆盖范围内所有UE的V2V/V2I协同比特率 |
12 | Three-Dimensional Resource Allocation in D2D-Based V2V Communication | 20-05-02 | D2D, 2I辅助2V 资源分配,图论 考虑行人资源 | 将CUE融入考虑 | 最大化V2I的容量 |
13 | Combining V2I with V2V Communications for Service Continuity in Vehicular Networks | 20-05-05 | V2V辅助的V2I 转发机制,辅助切换 随机过程(排队论) | 列举了三个已有的数据转发机制 | 最大化吞吐量,最小化单次中断时长 |
14 | Exploiting Moving Intelligence: Delay-Optimized Computation Offloading in Vehicular Fog Net | 20-05-10 | 雾计算 分配计算资源 利用移动性 编码计算 | | 任务卸载的延时 服务可靠性 |
15 | Age of Information Aware Radio Resource Management in Veh Net: A Proactive DRL Perspective | 20-05-11 | 信息年龄 强化学习 资源分配 | | 丢包数、信息年龄、功率 |
16 | Data Uploading in Hybrid V2V/V2I Veh Networks: Modeling and Cooperative Strategy | 20-05-11 | V2V/V2I 转发机制 | 有提到存携带转发机制 | 传输容量 传输时延 |
| | | | | |
17 | Integrated Networking, Caching, and Computing for Connected Vehicles: A DRL Approach | 20-06-12 | | | |
18 | Applications of Deep Reinforcement Learning in Communications and Networking: A Survey | 20-06-30 | | | |
19 | A Deep-Learning-Based Radio Resource Assignment Technique for 5G Ultra Dense Networks | 20-07-01 | | | |
20 | DECCO: Deep-Learning Enabled Coverage and Capacity Optimization for Massive MIMO Systems | 20-07-03 | | | |
| | | | | |
21 | Eco-Vehicular Edge Networks for Connected Transportation: A Distributed Multi-Agent Reinfor | 20-07-08 | UUDN (用户中心式VC) 多主体强化学习 | | 能效 |
22 | Reinforcement Learning based Control of Imitative Policies for Near-Accident Driving | 20-07-09 | RL和IL分层次学习 | 注:这个是车联网控制类相关,与通信无关 | 路径完成率 |
23 | Deep Reinforcement Learning Based Resource Allocation for V2V Communications | 20-08-26 | 开源代码 单播和广播 V2V资源分配 | | V2I/V2V容量,剩余时间 |
24 | Position-Based User-Centric Radio Resource Management in 5G UDN for URLLC Vehicular Commu | 20-08-26 | UUDN 基于距离分配RB | | 分到RB的车的占比(阻塞率) SINR>阈值的车的占比 |
发表评论 取消回复