我是靠谱客的博主 热心手机,最近开发中收集的这篇文章主要介绍【源码解析】Deep Reinforcement Learning for Online Computation Offloading,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
main.py
#
#################################################################
#
Deep Reinforcement Learning for Online Offloading in Wireless Powered Mobile-Edge Computing Networks
#
#
This file contains the main code of DROO. It loads the training samples saved in ./data/data_#.mat, splits the samples into two parts (training and testing data constitutes 80% and 20%), trains the DNN with training and validation samples, and finally tests the DNN with test data.
#
#
Input: ./data/data_#.mat
#
Data samples are generated according to the CD method presented in [2]. There are 30,000 samples saved in each ./data/data_#.mat, where # is the user number. Each data sample includes
#
-----------------------------------------------------------------
#
|
wireless channel gain
|
input_h
|
#
-----------------------------------------------------------------
#
|
computing mode selection
|
output_mode
|
#
-----------------------------------------------------------------
#
|
energy broadcasting parameter
|
output_a
|
#
-----------------------------------------------------------------
#
|
transmit time of wireless device
|
output_tau
|
#
-----------------------------------------------------------------
#
|
weighted sum computation rate
|
output_obj
|
#
-----------------------------------------------------------------
#
#
#
References:
#
[1] 1. Liang Huang, Suzhi Bi, and Ying-Jun Angela Zhang, "Deep Reinforcement Learning for Online Offloading in Wireless Powered Mobile-Edge Computing Networks," in IEEE Transactions on Mobile Computing, early access, 2019, DOI:10.1109/TMC.2019.2928811.
#
[2] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177-4190, Jun. 2018.
#
# version 1.0 -- July 2018. Written by Liang Huang (lianghuang AT zjut.edu.cn)
#
################################################################
import scipy.io as sio
# import scipy.io for .mat file I/
import numpy as np
# import numpy
# for tensorflow2
from memoryTF2 import MemoryDNN
from optimization import bisection
import time
def plot_rate( rate_his, rolling_intv = 50):
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib as mpl
rate_array = np.asarray(rate_his)
df = pd.DataFrame(rate_his)
mpl.style.use('seaborn')
fig, ax = plt.subplots(figsize=(15,8))
#
rolling_intv = 20
plt.plot(np.arange(len(rate_array))+1, df.rolling(rolling_intv, min_periods=1).mean(), 'b')
plt.fill_between(np.arange(len(rate_array))+1, df.rolling(rolling_intv, min_periods=1).min()[0], df.rolling(rolling_intv, min_periods=1).max()[0], color = 'b', alpha = 0.2)
plt.ylabel('Normalized Computation Rate')
plt.xlabel('Time Frames')
plt.show()
def save_to_txt(rate_his, file_path):
with open(file_path, 'w') as f:
for rate in rate_his:
f.write("%s n" % rate)
if __name__ == "__main__":
'''
This algorithm generates K modes from DNN, and chooses with largest
reward. The mode with largest reward is stored in the memory, which is
further used to train the DNN.
Adaptive K is implemented. K = max(K, K_his[-memory_size])
'''
N = 10
# number of users
n = 30000
# number of time frames
K = N
# initialize K = N
decoder_mode = 'OP'
# the quantization mode could be 'OP' (Order-preserving) or 'KNN'
Memory = 1024
# capacity of memory structure
Delta = 32
# Update interval for adaptive K
print('#user = %d, #channel=%d, K=%d, decoder = %s, Memory = %d, Delta = %d'%(N,n,K,decoder_mode, Memory, Delta))
# Load data
channel = sio.loadmat('./data/data_%d' %N)['input_h']
rate = sio.loadmat('./data/data_%d' %N)['output_obj'] # this rate is only used to plot figures; never used to train DROO.
# increase h to close to 1 for better training; it is a trick widely adopted in deep learning
channel = channel * 1000000
# generate the train and test data sample index
# data are splitted as 80:20
# training data are randomly sampled with duplication if n > total data size
split_idx = int(.8* len(channel))
num_test = min(len(channel) - split_idx, n - int(.8* n)) # training data size
mem = MemoryDNN(net = [N, 120, 80, N],
learning_rate = 0.01,
training_interval=10,
batch_size=128,
memory_size=Memory
)
start_time=time.time()
rate_his = []
rate_his_ratio = []
mode_his = []
k_idx_his = []
K_his = []
for i in range(n):
if i % (n//10) == 0:
print("%0.1f"%(i/n))
if i> 0 and i % Delta == 0:
# index counts from 0
if Delta > 1:
max_k = max(k_idx_his[-Delta:-1]) +1;
else:
max_k = k_idx_his[-1] +1;
K = min(max_k +1, N)
if i < n - num_test:
# training
i_idx = i % split_idx
else:
# test
i_idx = i - n + num_test + split_idx
h = channel[i_idx,:]
# the action selection must be either 'OP' or 'KNN'
m_list = mem.decode(h, K, decoder_mode)
r_list = []
for m in m_list:
r_list.append(bisection(h/1000000, m)[0])
# encode the mode with largest reward
mem.encode(h, m_list[np.argmax(r_list)])
# the main code for DROO training ends here
# the following codes store some interested metrics for illustrations
# memorize the largest reward
rate_his.append(np.max(r_list))
rate_his_ratio.append(rate_his[-1] / rate[i_idx][0])
# record the index of largest reward
k_idx_his.append(np.argmax(r_list))
# record K in case of adaptive K
K_his.append(K)
mode_his.append(m_list[np.argmax(r_list)])
total_time=time.time()-start_time
mem.plot_cost()
plot_rate(rate_his_ratio)
print("Averaged normalized computation rate:", sum(rate_his_ratio[-num_test: -1])/num_test)
print('Total time consumed:%s'%total_time)
print('Average time per channel:%s'%(total_time/n))
# save data into txt
save_to_txt(k_idx_his, "k_idx_his.txt")
save_to_txt(K_his, "K_his.txt")
save_to_txt(mem.cost_his, "cost_his.txt")
save_to_txt(rate_his_ratio, "rate_his_ratio.txt")
save_to_txt(mode_his, "mode_his.txt")
memory.py
#
#################################################################
#
This file contains the main DROO operations, including building DNN,
#
Storing data sample, Training DNN, and generating quantized binary offloading decisions.
#
version 1.0 -- January 2020. Written based on Tensorflow 2 by Weijian Pan and
#
Liang Huang (lianghuang AT zjut.edu.cn)
#
#################################################################
from __future__ import print_function
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
print(tf.__version__)
print(tf.keras.__version__)
# DNN network for memory
class MemoryDNN:
def __init__(
self,
net,
learning_rate = 0.01,
training_interval=10,
batch_size=100,
memory_size=1000,
output_graph=False
):
self.net = net
# the size of the DNN
self.training_interval = training_interval
# learn every #training_interval
self.lr = learning_rate
self.batch_size = batch_size
self.memory_size = memory_size
# store all binary actions
self.enumerate_actions = []
# stored # memory entry
self.memory_counter = 1
# store training cost
self.cost_his = []
# initialize zero memory [h, m]
self.memory = np.zeros((self.memory_size, self.net[0] + self.net[-1]))
# construct memory network
self._build_net()
def _build_net(self):
self.model = keras.Sequential([
layers.Dense(self.net[1], activation='relu'),
# the first hidden layer
layers.Dense(self.net[2], activation='relu'),
# the second hidden layer
layers.Dense(self.net[-1], activation='sigmoid')
# the output layer
])
self.model.compile(optimizer=keras.optimizers.Adam(lr=self.lr), loss=tf.losses.binary_crossentropy, metrics=['accuracy'])
def remember(self, h, m):
# replace the old memory with new memory
idx = self.memory_counter % self.memory_size
self.memory[idx, :] = np.hstack((h, m))
self.memory_counter += 1
def encode(self, h, m):
# encoding the entry
self.remember(h, m)
# train the DNN every 10 step
#
if self.memory_counter> self.memory_size / 2 and self.memory_counter % self.training_interval == 0:
if self.memory_counter % self.training_interval == 0:
self.learn()
def learn(self):
# sample batch memory from all memory
if self.memory_counter > self.memory_size:
sample_index = np.random.choice(self.memory_size, size=self.batch_size)
else:
sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
batch_memory = self.memory[sample_index, :]
h_train = batch_memory[:, 0: self.net[0]]
m_train = batch_memory[:, self.net[0]:]
# print(h_train)
# (128, 10)
# print(m_train)
# (128, 10)
# train the DNN
hist = self.model.fit(h_train, m_train, verbose=0)
self.cost = hist.history['loss'][0]
assert(self.cost > 0)
self.cost_his.append(self.cost)
def decode(self, h, k = 1, mode = 'OP'):
# to have batch dimension when feed into tf placeholder
h = h[np.newaxis, :]
m_pred = self.model.predict(h)
if mode == 'OP':
return self.knm(m_pred[0], k)
elif mode == 'KNN':
return self.knn(m_pred[0], k)
else:
print("The action selection must be 'OP' or 'KNN'")
def knm(self, m, k = 1):
# return k order-preserving binary actions
m_list = []
# generate the first binary offloading decision with respect to equation (8)
m_list.append(1*(m>0.5))
if k > 1:
# generate the remaining K-1 binary offloading decisions with respect to equation (9)
m_abs = abs(m-0.5)
idx_list = np.argsort(m_abs)[:k-1]
for i in range(k-1):
if m[idx_list[i]] >0.5:
# set the hat{x}_{t,(k-1)} to 0
m_list.append(1*(m - m[idx_list[i]] > 0))
else:
# set the hat{x}_{t,(k-1)} to 1
m_list.append(1*(m - m[idx_list[i]] >= 0))
return m_list
def knn(self, m, k = 1):
# list all 2^N binary offloading actions
if len(self.enumerate_actions) == 0:
import itertools
self.enumerate_actions = np.array(list(map(list, itertools.product([0, 1], repeat=self.net[0]))))
# the 2-norm
sqd = ((self.enumerate_actions - m)**2).sum(1)
idx = np.argsort(sqd)
return self.enumerate_actions[idx[:k]]
def plot_cost(self):
import matplotlib.pyplot as plt
plt.plot(np.arange(len(self.cost_his))*self.training_interval, self.cost_his)
plt.ylabel('Training Loss')
plt.xlabel('Time Frames')
plt.show()
optimization.py
# -*- coding: utf-8 -*-
"""
Created on Tue Jan
9 10:45:26 2018
@author: Administrator
"""
import numpy as np
from scipy import optimize
from scipy.special import lambertw
import scipy.io as sio
# import scipy.io for .mat file I/
import time
def plot_gain( gain_his):
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib as mpl
gain_array = np.asarray(gain_his)
df = pd.DataFrame(gain_his)
mpl.style.use('seaborn')
fig, ax = plt.subplots(figsize=(15,8))
rolling_intv = 20
plt.plot(np.arange(len(gain_array))+1, df.rolling(rolling_intv, min_periods=1).mean(), 'b')
plt.fill_between(np.arange(len(gain_array))+1, df.rolling(rolling_intv, min_periods=1).min()[0], df.rolling(rolling_intv, min_periods=1).max()[0], color = 'b', alpha = 0.2)
plt.ylabel('Gain ratio')
plt.xlabel('learning steps')
plt.show()
def bisection(h, M, weights=[]):
# the bisection algorithm proposed by Suzhi BI
# average time to find the optimal: 0.012535839796066284 s
# parameters and equations
o=100
p=3
u=0.7
eta1=((u*p)**(1.0/3))/o
ki=10**-26
eta2=u*p/10**-10
B=2*10**6
Vu=1.1
epsilon=B/(Vu*np.log(2))
x = [] # a =x[0], and tau_j = a[1:]
M0=np.where(M==0)[0]
M1=np.where(M==1)[0]
hi=np.array([h[i] for i in M0])
hj=np.array([h[i] for i in M1])
if len(weights) == 0:
# default weights [1, 1.5, 1, 1.5, 1, 1.5, ...]
weights = [1.5 if i%2==1 else 1 for i in range(len(M))]
wi=np.array([weights[M0[i]] for i in range(len(M0))])
wj=np.array([weights[M1[i]] for i in range(len(M1))])
def sum_rate(x):
sum1=sum(wi*eta1*(hi/ki)**(1.0/3)*x[0]**(1.0/3))
sum2=0
for i in range(len(M1)):
sum2+=wj[i]*epsilon*x[i+1]*np.log(1+eta2*hj[i]**2*x[0]/x[i+1])
return sum1+sum2
def phi(v, j):
return 1/(-1-1/(lambertw(-1/(np.exp( 1 + v/wj[j]/epsilon))).real))
def p1(v):
p1 = 0
for j in range(len(M1)):
p1 += hj[j]**2 * phi(v, j)
return 1/(1 + p1 * eta2)
def Q(v):
sum1 = sum(wi*eta1*(hi/ki)**(1.0/3))*p1(v)**(-2/3)/3
sum2 = 0
for j in range(len(M1)):
sum2 += wj[j]*hj[j]**2/(1 + 1/phi(v,j))
return sum1 + sum2*epsilon*eta2 - v
def tau(v, j):
return eta2*hj[j]**2*p1(v)*phi(v,j)
# bisection starts here
delta = 0.005
UB = 999999999
LB = 0
while UB - LB > delta:
v = (float(UB) + LB)/2
if Q(v) > 0:
LB = v
else:
UB = v
x.append(p1(v))
for j in range(len(M1)):
x.append(tau(v, j))
return sum_rate(x), x[0], x[1:]
def cd_method(h):
N = len(h)
M0 = np.random.randint(2,size = N)
gain0,a,Tj= bisection(h,M0)
g_list = []
M_list = []
while True:
for j in range(0,N):
M = np.copy(M0)
M[j] = (M[j]+1)%2
gain,a,Tj= bisection(h,M)
g_list.append(gain)
M_list.append(M)
g_max = max(g_list)
if g_max > gain0:
gain0 = g_max
M0 = M_list[g_list.index(g_max)]
else:
break
return gain0, M0
if __name__ == "__main__":
h=np.array([6.06020304235508*10**-6,1.10331933767028*10**-5,1.00213540309998*10**-7,1.21610610942759*10**-6,1.96138838395145*10**-6,1.71456339592966*10**-6,5.24563569673585*10**-6,5.89530717142197*10**-7,4.07769429231962*10**-6,2.88333185798682*10**-6])
M=np.array([1,0,0,0,1,0,0,0,0,0])
#
h=np.array([1.00213540309998*10**-7,1.10331933767028*10**-5,6.06020304235508*10**-6,1.21610610942759*10**-6,1.96138838395145*10**-6,1.71456339592966*10**-6,5.24563569673585*10**-6,5.89530717142197*10**-7,4.07769429231962*10**-6,2.88333185798682*10**-6])
#
M=np.array([0,0,1,0,1,0,0,0,0,0])
#
h = np.array([4.6368924987170947*10**-7, 1.3479411763648968*10**-7, 7.174945246007612*10**-6, 2.5590719803595445*10**-7, 3.3189928740379023*10**-6, 1.2109071327755575*10**-5, 2.394278475886022*10**-6, 2.179121774067472*10**-6, 5.5213902658478367*10**-8, 2.168778154948169*10**-7, 2.053227965874453*10**-6, 7.002952297466865*10**-8, 7.594077851181444*10**-8, 7.904048961975136*10**-7, 8.867218892023474*10**-7, 5.886007653360979*10**-6, 2.3470565740563855*10**-6, 1.387049627074303*10**-7, 3.359475870531776*10**-7, 2.633733784949562*10**-7, 2.189895264149453*10**-6, 1.129177795302099*10**-5, 1.1760290137191366*10**-6, 1.6588656719735275*10**-7, 1.383637788476638*10**-6, 1.4485928387351664*10**-6, 1.4262265958416598*10**-6, 1.1779725004265418*10**-6, 7.738218993031842*10**-7, 4.763534225174186*10**-6])
#
M =np.array( [0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,])
#
time the average speed of bisection algorithm
#
repeat = 1
#
M =np.random.randint(2, size=(repeat,len(h)))
#
start_time=time.time()
#
for i in range(repeat):
#
gain,a,Tj= bisection(h,M[i,:])
#
total_time=time.time()-start_time
#
print('time_cost:%s'%(total_time/repeat))
gain,a,Tj= bisection(h,M)
print('y:%s'%gain)
print('a:%s'%a)
print('Tj:%s'%Tj)
# test CD method. Given h, generate the max mode
gain0, M0 = cd_method(h)
print('max y:%s'%gain0)
print(M0)
# test all data
K = [10, 20, 30]
# number of users
N = 1000
# number of channel
for k in K:
# Load data
channel = sio.loadmat('./data/data_%d' %int(k))['input_h']
gain = sio.loadmat('./data/data_%d' %int(k))['output_obj']
start_time=time.time()
gain_his = []
gain_his_ratio = []
mode_his = []
for i in range(N):
if i % (N//10) == 0:
print("%0.1f"%(i/N))
i_idx = i
h = channel[i_idx,:]
# the CD method
gain0, M0 = cd_method(h)
# memorize the largest reward
gain_his.append(gain0)
gain_his_ratio.append(gain_his[-1] / gain[i_idx][0])
mode_his.append(M0)
total_time=time.time()-start_time
print('time_cost:%s'%total_time)
print('average time per channel:%s'%(total_time/N))
plot_gain(gain_his_ratio)
print("gain/max ratio: ", sum(gain_his_ratio)/N)
demo_alternate_weights.py
#
#################################################################
#
Deep Reinforcement Learning for Online Offloading in Wireless Powered Mobile-Edge Computing Networks
#
#
This file contains a demo evaluating the performance of DROO with laternating-weight WDs. It loads the training samples with default WDs' weights from ./data/data_10.mat and with alternated weights from ./data/data_10_WeightsAlternated.mat. The channel gains in both files are the same. However, the optimal offloading mode, resource allocation, and the maximum computation rate in 'data_10_WeightsAlternated.mat' are recalculated since WDs' weights are alternated.
#
#
References:
#
[1] 1. Liang Huang, Suzhi Bi, and Ying-jun Angela Zhang, “Deep Reinforcement Learning for Online Offloading in Wireless Powered Mobile-Edge Computing Networks”, on arxiv:1808.01977
#
# version 1.0 -- April 2019. Written by Liang Huang (lianghuang AT zjut.edu.cn)
#
#################################################################
import scipy.io as sio
# import scipy.io for .mat file I/
import numpy as np
# import numpy
from memory import MemoryDNN
from optimization import bisection
from main import plot_rate, save_to_txt
import time
def alternate_weights(case_id=0):
'''
Alternate the weights of all WDs. Note that, the maximum computation rate need be recomputed by solving (P2) once any WD's weight is changed.
Input: case_id = 0 for default weights; case_id = 1 for alternated weights.
Output: The alternated weights and the corresponding rate.
'''
# set alternated weights
weights=[[1,1.5,1,1.5,1,1.5,1,1.5,1,1.5],[1.5,1,1.5,1,1.5,1,1.5,1,1.5,1]]
# load the corresponding maximum computation rate
if case_id == 0:
# by defaulst, case_id = 0
rate = sio.loadmat('./data/data_10')['output_obj']
else:
# alternate weights for all WDs, case_id = 1
rate = sio.loadmat('./data/data_10_WeightsAlternated')['output_obj']
return weights[case_id], rate
if __name__ == "__main__":
'''
This demo evaluate DROO with laternating-weight WDs. We evaluate an extreme case by alternating the weights of all WDs between 1 and 1.5 at the same time, specifically, at time frame 6,000 and 8,000.
'''
N = 10
# number of users
n = 10000
# number of time frames, <= 10,000
K = N
# initialize K = N
decoder_mode = 'OP'
# the quantization mode could be 'OP' (Order-preserving) or 'KNN'
Memory = 1024
# capacity of memory structure
Delta = 32
# Update interval for adaptive K
print('#user = %d, #channel=%d, K=%d, decoder = %s, Memory = %d, Delta = %d'%(N,n,K,decoder_mode, Memory, Delta))
# Load data
channel = sio.loadmat('./data/data_%d' %N)['input_h']
rate = sio.loadmat('./data/data_%d' %N)['output_obj']
# increase h to close to 1 for better training; it is a trick widely adopted in deep learning
channel = channel * 1000000
# generate the train and test data sample index
# data are splitted as 80:20
# training data are randomly sampled with duplication if n > total data size
split_idx = int(.8* len(channel))
num_test = min(len(channel) - split_idx, n - int(.8* n)) # training data size
mem = MemoryDNN(net = [N, 120, 80, N],
learning_rate = 0.01,
training_interval=10,
batch_size=128,
memory_size=Memory
)
start_time=time.time()
rate_his = []
rate_his_ratio = []
mode_his = []
k_idx_his = []
K_his = []
h = channel[0,:]
# initilize the weights by setting case_id = 0.
weight, rate = alternate_weights(0)
print("WD weights at time frame %d:"%(0), weight)
for i in range(n):
# for dynamic number of WDs
if i ==0.6*n:
weight, rate = alternate_weights(1)
print("WD weights at time frame %d:"%(i), weight)
if i ==0.8*n:
weight, rate = alternate_weights(0)
print("WD weights at time frame %d:"%(i), weight)
if i % (n//10) == 0:
print("%0.1f"%(i/n))
if i> 0 and i % Delta == 0:
# index counts from 0
if Delta > 1:
max_k = max(k_idx_his[-Delta:-1]) +1;
else:
max_k = k_idx_his[-1] +1;
K = min(max_k +1, N)
i_idx = i
h = channel[i_idx,:]
# the action selection must be either 'OP' or 'KNN'
m_list = mem.decode(h, K, decoder_mode)
r_list = []
for m in m_list:
# only acitve users are used to compute the rate
r_list.append(bisection(h/1000000, m, weight)[0])
# memorize the largest reward
rate_his.append(np.max(r_list))
rate_his_ratio.append(rate_his[-1] / rate[i_idx][0])
# record the index of largest reward
k_idx_his.append(np.argmax(r_list))
# record K in case of adaptive K
K_his.append(K)
# save the mode with largest reward
mode_his.append(m_list[np.argmax(r_list)])
#
if i <0.6*n:
# encode the mode with largest reward
mem.encode(h, m_list[np.argmax(r_list)])
total_time=time.time()-start_time
mem.plot_cost()
plot_rate(rate_his_ratio)
print("Averaged normalized computation rate:", sum(rate_his_ratio[-num_test: -1])/num_test)
print('Total time consumed:%s'%total_time)
print('Average time per channel:%s'%(total_time/n))
# save data into txt
save_to_txt(k_idx_his, "k_idx_his.txt")
save_to_txt(K_his, "K_his.txt")
save_to_txt(mem.cost_his, "cost_his.txt")
save_to_txt(rate_his_ratio, "rate_his_ratio.txt")
save_to_txt(mode_his, "mode_his.txt")
demo_on_off.py
#
#################################################################
#
Deep Reinforcement Learning for Online Offloading in Wireless Powered Mobile-Edge Computing Networks
#
#
This file contains a demo evaluating the performance of DROO by randomly turning on/off some WDs. It loads the training samples from ./data/data_#.mat, where # denotes the number of active WDs in the MEC network. Note that, the maximum computation rate need be recomputed by solving (P2) once a WD is turned off/on.
#
#
References:
#
[1] 1. Liang Huang, Suzhi Bi, and Ying-jun Angela Zhang, “Deep Reinforcement Learning for Online Offloading in Wireless Powered Mobile-Edge Computing Networks”, submitted to IEEE Journal on Selected Areas in Communications.
#
# version 1.0 -- April 2019. Written by Liang Huang (lianghuang AT zjut.edu.cn)
#
#################################################################
import scipy.io as sio
# import scipy.io for .mat file I/
import numpy as np
# import numpy
from memory import MemoryDNN
from optimization import bisection
from main import plot_rate, save_to_txt
import time
def WD_off(channel, N_active, N):
# turn off one WD
if N_active > 5: # current we support half of WDs are off
N_active = N_active - 1
# set the (N-active-1)th channel to close to 0
# since all channels in each time frame are randomly generated, we turn of the WD with greatest index
channel[:,N_active] = channel[:, N_active] / 1000000 # a programming trick,such that we can recover its channel gain once the WD is turned on again.
print("
The %dth WD is turned on."%(N_active +1))
# update the expected maximum computation rate
rate = sio.loadmat('./data/data_%d' %N_active)['output_obj']
return channel, rate, N_active
def WD_on(channel, N_active, N):
# turn on one WD
if N_active < N:
N_active = N_active + 1
# recover (N_active-1)th channel
channel[:,N_active-1] = channel[:, N_active-1] * 1000000
print("
The %dth WD is turned on."%(N_active))
# update the expected maximum computation
rate
rate = sio.loadmat('./data/data_%d' %N_active)['output_obj']
return channel, rate, N_active
if __name__ == "__main__":
'''
This demo evaluate DROO for MEC networks where WDs can be occasionally turned off/on. After DROO converges, we randomly turn off on one WD at each time frame 6,000, 6,500, 7,000, and 7,500, and then turn them on at time frames 8,000, 8,500, and 9,000. At time frame 9,500 , we randomly turn off two WDs, resulting an MEC network with 8 acitve WDs.
'''
N = 10
# number of users
N_active = N
# number of effective users
N_off = 0
# number of off-users
n = 10000
# number of time frames, <= 10,000
K = N
# initialize K = N
decoder_mode = 'OP'
# the quantization mode could be 'OP' (Order-preserving) or 'KNN'
Memory = 1024
# capacity of memory structure
Delta = 32
# Update interval for adaptive K
print('#user = %d, #channel=%d, K=%d, decoder = %s, Memory = %d, Delta = %d'%(N,n,K,decoder_mode, Memory, Delta))
# Load data
channel = sio.loadmat('./data/data_%d' %N)['input_h']
rate = sio.loadmat('./data/data_%d' %N)['output_obj']
# increase h to close to 1 for better training; it is a trick widely adopted in deep learning
channel = channel * 1000000
channel_bak = channel.copy()
# generate the train and test data sample index
# data are splitted as 80:20
# training data are randomly sampled with duplication if n > total data size
split_idx = int(.8* len(channel))
num_test = min(len(channel) - split_idx, n - int(.8* n)) # training data size
mem = MemoryDNN(net = [N, 120, 80, N],
learning_rate = 0.01,
training_interval=10,
batch_size=128,
memory_size=Memory
)
start_time=time.time()
rate_his = []
rate_his_ratio = []
mode_his = []
k_idx_his = []
K_his = []
h = channel[0,:]
for i in range(n):
# for dynamic number of WDs
if i ==0.6*n:
print("At time frame %d:"%(i))
channel, rate, N_active = WD_off(channel, N_active, N)
if i ==0.65*n:
print("At time frame %d:"%(i))
channel, rate, N_active = WD_off(channel, N_active, N)
if i ==0.7*n:
print("At time frame %d:"%(i))
channel, rate, N_active = WD_off(channel, N_active, N)
if i ==0.75*n:
print("At time frame %d:"%(i))
channel, rate, N_active = WD_off(channel, N_active, N)
if i ==0.8*n:
print("At time frame %d:"%(i))
channel, rate, N_active = WD_on(channel, N_active, N)
if i ==0.85*n:
print("At time frame %d:"%(i))
channel, rate, N_active = WD_on(channel, N_active, N)
if i ==0.9*n:
print("At time frame %d:"%(i))
channel, rate, N_active = WD_on(channel, N_active, N)
channel, rate, N_active = WD_on(channel, N_active, N)
if i == 0.95*n:
print("At time frame %d:"%(i))
channel, rate, N_active = WD_off(channel, N_active, N)
channel, rate, N_active = WD_off(channel, N_active, N)
if i % (n//10) == 0:
print("%0.1f"%(i/n))
if i> 0 and i % Delta == 0:
# index counts from 0
if Delta > 1:
max_k = max(k_idx_his[-Delta:-1]) +1;
else:
max_k = k_idx_his[-1] +1;
K = min(max_k +1, N)
i_idx = i
h = channel[i_idx,:]
# the action selection must be either 'OP' or 'KNN'
m_list = mem.decode(h, K, decoder_mode)
r_list = []
for m in m_list:
# only acitve users are used to compute the rate
r_list.append(bisection(h[0:N_active]/1000000, m[0:N_active])[0])
# memorize the largest reward
rate_his.append(np.max(r_list))
rate_his_ratio.append(rate_his[-1] / rate[i_idx][0])
# record the index of largest reward
k_idx_his.append(np.argmax(r_list))
# record K in case of adaptive K
K_his.append(K)
# save the mode with largest reward
mode_his.append(m_list[np.argmax(r_list)])
#
if i <0.6*n:
# encode the mode with largest reward
mem.encode(h, m_list[np.argmax(r_list)])
total_time=time.time()-start_time
mem.plot_cost()
plot_rate(rate_his_ratio)
print("Averaged normalized computation rate:", sum(rate_his_ratio[-num_test: -1])/num_test)
print('Total time consumed:%s'%total_time)
print('Average time per channel:%s'%(total_time/n))
# save data into txt
save_to_txt(k_idx_his, "k_idx_his.txt")
save_to_txt(K_his, "K_his.txt")
save_to_txt(mem.cost_his, "cost_his.txt")
save_to_txt(rate_his_ratio, "rate_his_ratio.txt")
save_to_txt(mode_his, "mode_his.txt")
最后
以上就是热心手机为你收集整理的【源码解析】Deep Reinforcement Learning for Online Computation Offloading的全部内容,希望文章能够帮你解决【源码解析】Deep Reinforcement Learning for Online Computation Offloading所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复