我是靠谱客的博主 迷路蜜蜂,最近开发中收集的这篇文章主要介绍boosting和bootstrap区别,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

bootstrap、boosting是机器学习中几种常用的重采样方法。其中bootstrap重采样方法主要用于统计量的估计,boosting方法则主要用于多个子分类器的组合。

bootstrap:估计统计量的重采样方法(推荐学习:Python视频教程)

bootstrap方法是从大小为n的原始训练数据集DD中随机选择n个样本点组成一个新的训练集,这个选择过程独立重复B次,然后用这B个数据集对模型统计量进行估计(如均值、方差等)。由于原始数据集的大小就是n,所以这B个新的训练集中不可避免的会存在重复的样本。

统计量的估计值定义为独立的B个训练集上的估计值θbθb的平均:

boosting:

boosting依次训练k个子分类器,最终的分类结果由这些子分类器投票决定。

首先从大小为n的原始训练数据集中随机选取n1n1个样本训练出第一个分类器,记为C1C1,然后构造第二个分类器C2C2的训练集D2D2,要求:D2D2中一半样本能被C1C1正确分类,而另一半样本被C1C1错分。

接着继续构造第三个分类器C3C3的训练集D3D3,要求:C1C1、C2C2对D3D3中样本的分类结果不同。剩余的子分类器按照类似的思路进行训练。

boosting构造新训练集的主要原则是使用最富信息的样本。

最后

以上就是迷路蜜蜂为你收集整理的boosting和bootstrap区别的全部内容,希望文章能够帮你解决boosting和bootstrap区别所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(60)

评论列表共有 0 条评论

立即
投稿
返回
顶部