我是靠谱客的博主 舒适毛巾,这篇文章主要介绍基于python如何实现计算两组数据P值,现在分享给大家,希望可以做个参考。

我们在做A/B试验评估的时候需要借助p_value,这篇文章记录如何利用python计算两组数据的显著性。

一、代码

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# TTest.py # -*- coding: utf-8 -*- ''' # Created on 2020-05-20 20:36 # TTest.py # @author: huiwenhua ''' ## Import the packages import numpy as np from scipy import stats def get_p_value(arrA, arrB): a = np.array(arrA) b = np.array(arrB) t, p = stats.ttest_ind(a,b) return p if __name__ == "__main__": get_p_value([1, 2, 3, 5, ], [6, 7, 8, 9, 10])
登录后复制

二、T检验:两样本T检验

两样本t检验是比较两个样本所代表的两个总体均值是否存在显著差异。除了要求样本来自正态分布,还要求两个样本的总体方差相等也就是“方差齐性”。

检验原假设:样本均值无差异(μ=μ0)

Python命令stats.ttest_ind(data1,data2)

当不确定两总体方差是否相等时,应先利用levene检验检验两总体是否具有方差齐性stats.levene(data1,data2)如果返回结果的p值远大于0.05,那么我们认为两总体具有方差齐性。如果两总体不具有方差齐性,需要加上参数equal_val并设定为False,如下。

stats.ttest_ind(data1,data2,equal_var=False) // TTest中默认是具有方差齐性

三、结果解释

当p值小于某个显著性水平α(比如0.05)时,则认为样本均值存在显著差异,具体的分析要看所选择的是双边假设还是单边假设(又分小于和大于)注意stats.ttest_ind进行双侧检验。

当t值大于0,则有((1-p)* 100)%的把握认为认为第一组数据好与第二组数据。例如p=0.05,那么我们有95%的把握认为第一组数据好于第二组数据。

以上就是基于python如何实现计算两组数据P值的详细内容,更多请关注靠谱客其它相关文章!

最后

以上就是舒适毛巾最近收集整理的关于基于python如何实现计算两组数据P值的全部内容,更多相关基于python如何实现计算两组数据P值内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(90)

评论列表共有 0 条评论

立即
投稿
返回
顶部