我是靠谱客的博主 聪明钢笔,最近开发中收集的这篇文章主要介绍浅谈Python实现Apriori算法介绍,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

导读:

随着大数据概念的火热,啤酒与尿布的故事广为人知。我们如何发现买啤酒的人往往也会买尿布这一规律?数据挖掘中的用于挖掘频繁项集和关联规则的Apriori算法可以告诉我们。本文首先对Apriori算法进行简介,而后进一步介绍相关的基本概念,之后详细的介绍Apriori算法的具体策略和步骤,最后给出Python实现代码。

1.Apriori算法简介

Apriori算法是经典的挖掘频繁项集和关联规则的数据挖掘算法。A priori在拉丁语中指"来自以前"。当定义问题时,通常会使用先验知识或者假设,这被称作"一个先验"(a priori)。Apriori算法的名字正是基于这样的事实:算法使用频繁项集性质的先验性质,即频繁项集的所有非空子集也一定是频繁的。Apriori算法使用一种称为逐层搜索的迭代方法,其中k项集用于探索(k+1)项集。首先,通过扫描数据库,累计每个项的计数,并收集满足最小支持度的项,找出频繁1项集的集合。该集合记为L1。然后,使用L1找出频繁2项集的集合L2,使用L2找出L3,如此下去,直到不能再找到频繁k项集。每找出一个Lk需要一次数据库的完整扫描。Apriori算法使用频繁项集的先验性质来压缩搜索空间。

2. 基本概念

  1. 项与项集:设itemset={item1, item_2, …, item_m}是所有项的集合,其中,item_k(k=1,2,…,m)成为项。项的集合称为项集(itemset),包含k个项的项集称为k项集(k-itemset)。
  2. 事务与事务集:一个事务T是一个项集,它是itemset的一个子集,每个事务均与一个唯一标识符Tid相联系。不同的事务一起组成了事务集D,它构成了关联规则发现的事务数据库。
  3. 关联规则:关联规则是形如A=>B的蕴涵式,其中A、B均为itemset的子集且均不为空集,而A交B为空。
  4. 支持度(support):关联规则的支持度定义如下:

其中表示事务包含集合A和B的并(即包含A和B中的每个项)的概率。注意与P(A or B)区别,后者表示事务包含A或B的概率。

置信度(confidence):关联规则的置信度定义如下:

项集的出现频度(support count):包含项集的事务数,简称为项集的频度、支持度计数或计数。

频繁项集(frequent itemset):如果项集I的相对支持度满足事先定义好的最小支持度阈值(即I的出现频度大于相应的最小出现频度(支持度计数)阈值),则I是频繁项集。

强关联规则:满足最小支持度和最小置信度的关联规则,即待挖掘的关联规则。

3. 实现步骤

一般而言,关联规则的挖掘是一个两步的过程:

  1. 找出所有的频繁项集
  2. 由频繁项集产生强关联规则

3.1挖掘频繁项集

3.1.1相关定义

连接步骤:频繁(k-1)项集Lk-1的自身连接产生候选k项集Ck

Apriori算法假定项集中的项按照字典序排序。如果Lk-1中某两个的元素(项集)itemset1和itemset2的前(k-2)个项是相同的,则称itemset1和itemset2是可连接的。所以itemset1与itemset2连接产生的结果项集是{itemset1[1], itemset1[2], …, itemset1[k-1], itemset2[k-1]}。连接步骤包含在下文代码中的create_Ck函数中。

剪枝策略

由于存在先验性质:任何非频繁的(k-1)项集都不是频繁k项集的子集。因此,如果一个候选k项集Ck的(k-1)项子集不在Lk-1中,则该候选也不可能是频繁的,从而可以从Ck中删除,获得压缩后的Ck。下文代码中的is_apriori函数用于判断是否满足先验性质,create_Ck函数中包含剪枝步骤,即若不满足先验性质,剪枝。

删除策略

基于压缩后的Ck,扫描所有事务,对Ck中的每个项进行计数,然后删除不满足最小支持度的项,从而获得频繁k项集。删除策略包含在下文代码中的generate_Lk_by_Ck函数中。

3.1.2 步骤

  1.  每个项都是候选1项集的集合C1的成员。算法扫描所有的事务,获得每个项,生成C1(见下文代码中的create_C1函数)。然后对每个项进行计数。然后根据最小支持度从C1中删除不满足的项,从而获得频繁1项集L1。
  2. 对L1的自身连接生成的集合执行剪枝策略产生候选2项集的集合C2,然后,扫描所有事务,对C2中每个项进行计数。同样的,根据最小支持度从C2中删除不满足的项,从而获得频繁2项集L2。
  3. 对L2的自身连接生成的集合执行剪枝策略产生候选3项集的集合C3,然后,扫描所有事务,对C3每个项进行计数。同样的,根据最小支持度从C3中删除不满足的项,从而获得频繁3项集L3。
  4. 以此类推,对Lk-1的自身连接生成的集合执行剪枝策略产生候选k项集Ck,然后,扫描所有事务,对Ck中的每个项进行计数。然后根据最小支持度从Ck中删除不满足的项,从而获得频繁k项集。

3.2 由频繁项集产生关联规则

一旦找出了频繁项集,就可以直接由它们产生强关联规则。产生步骤如下:

对于每个频繁项集itemset,产生itemset的所有非空子集(这些非空子集一定是频繁项集);

对于itemset的每个非空子集s,如果,则输出,其中min_conf是最小置信度阈值。

4. 样例以及Python实现代码

下图是《数据挖掘:概念与技术》(第三版)中挖掘频繁项集的样例图解。

本文基于该样例的数据编写Python代码实现Apriori算法。代码需要注意如下两点:

  1. 由于Apriori算法假定项集中的项是按字典序排序的,而集合本身是无序的,所以我们在必要时需要进行set和list的转换;
  2. 由于要使用字典(support_data)记录项集的支持度,需要用项集作为key,而可变集合无法作为字典的key,因此在合适时机应将项集转为固定集合frozenset。

"""
# Python 2.7
# Filename: apriori.py
# Author: llhthinker
# Email: hangliu56[AT]gmail[DOT]com
# Blog: http://www.cnblogs.com/llhthinker/p/6719779.html
# Date: 2017-04-16
"""


def load_data_set():
  """
  Load a sample data set (From Data Mining: Concepts and Techniques, 3th Edition)
  Returns: 
    A data set: A list of transactions. Each transaction contains several items.
  """
  data_set = [['l1', 'l2', 'l5'], ['l2', 'l4'], ['l2', 'l3'],
      ['l1', 'l2', 'l4'], ['l1', 'l3'], ['l2', 'l3'],
      ['l1', 'l3'], ['l1', 'l2', 'l3', 'l5'], ['l1', 'l2', 'l3']]
  return data_set


def create_C1(data_set):
  """
  Create frequent candidate 1-itemset C1 by scaning data set.
  Args:
    data_set: A list of transactions. Each transaction contains several items.
  Returns:
    C1: A set which contains all frequent candidate 1-itemsets
  """
  C1 = set()
  for t in data_set:
    for item in t:
      item_set = frozenset([item])
      C1.add(item_set)
  return C1


def is_apriori(Ck_item, Lksub1):
  """
  Judge whether a frequent candidate k-itemset satisfy Apriori property.
  Args:
    Ck_item: a frequent candidate k-itemset in Ck which contains all frequent
         candidate k-itemsets.
    Lksub1: Lk-1, a set which contains all frequent candidate (k-1)-itemsets.
  Returns:
    True: satisfying Apriori property.
    False: Not satisfying Apriori property.
  """
  for item in Ck_item:
    sub_Ck = Ck_item - frozenset([item])
    if sub_Ck not in Lksub1:
      return False
  return True


def create_Ck(Lksub1, k):
  """
  Create Ck, a set which contains all all frequent candidate k-itemsets
  by Lk-1's own connection operation.
  Args:
    Lksub1: Lk-1, a set which contains all frequent candidate (k-1)-itemsets.
    k: the item number of a frequent itemset.
  Return:
    Ck: a set which contains all all frequent candidate k-itemsets.
  """
  Ck = set()
  len_Lksub1 = len(Lksub1)
  list_Lksub1 = list(Lksub1)
  for i in range(len_Lksub1):
    for j in range(1, len_Lksub1):
      l1 = list(list_Lksub1[i])
      l2 = list(list_Lksub1[j])
      l1.sort()
      l2.sort()
      if l1[0:k-2] == l2[0:k-2]:
        Ck_item = list_Lksub1[i] | list_Lksub1[j]
        # pruning
        if is_apriori(Ck_item, Lksub1):
          Ck.add(Ck_item)
  return Ck


def generate_Lk_by_Ck(data_set, Ck, min_support, support_data):
  """
  Generate Lk by executing a delete policy from Ck.
  Args:
    data_set: A list of transactions. Each transaction contains several items.
    Ck: A set which contains all all frequent candidate k-itemsets.
    min_support: The minimum support.
    support_data: A dictionary. The key is frequent itemset and the value is support.
  Returns:
    Lk: A set which contains all all frequent k-itemsets.
  """
  Lk = set()
  item_count = {}
  for t in data_set:
    for item in Ck:
      if item.issubset(t):
        if item not in item_count:
          item_count[item] = 1
        else:
          item_count[item] += 1
  t_num = float(len(data_set))
  for item in item_count:
    if (item_count[item] / t_num) >= min_support:
      Lk.add(item)
      support_data[item] = item_count[item] / t_num
  return Lk


def generate_L(data_set, k, min_support):
  """
  Generate all frequent itemsets.
  Args:
    data_set: A list of transactions. Each transaction contains several items.
    k: Maximum number of items for all frequent itemsets.
    min_support: The minimum support.
  Returns:
    L: The list of Lk.
    support_data: A dictionary. The key is frequent itemset and the value is support.
  """
  support_data = {}
  C1 = create_C1(data_set)
  L1 = generate_Lk_by_Ck(data_set, C1, min_support, support_data)
  Lksub1 = L1.copy()
  L = []
  L.append(Lksub1)
  for i in range(2, k+1):
    Ci = create_Ck(Lksub1, i)
    Li = generate_Lk_by_Ck(data_set, Ci, min_support, support_data)
    Lksub1 = Li.copy()
    L.append(Lksub1)
  return L, support_data


def generate_big_rules(L, support_data, min_conf):
  """
  Generate big rules from frequent itemsets.
  Args:
    L: The list of Lk.
    support_data: A dictionary. The key is frequent itemset and the value is support.
    min_conf: Minimal confidence.
  Returns:
    big_rule_list: A list which contains all big rules. Each big rule is represented
            as a 3-tuple.
  """
  big_rule_list = []
  sub_set_list = []
  for i in range(0, len(L)):
    for freq_set in L[i]:
      for sub_set in sub_set_list:
        if sub_set.issubset(freq_set):
          conf = support_data[freq_set] / support_data[freq_set - sub_set]
          big_rule = (freq_set - sub_set, sub_set, conf)
          if conf >= min_conf and big_rule not in big_rule_list:
            # print freq_set-sub_set, " => ", sub_set, "conf: ", conf
            big_rule_list.append(big_rule)
      sub_set_list.append(freq_set)
  return big_rule_list


if __name__ == "__main__":
  """
  Test
  """
  data_set = load_data_set()
  L, support_data = generate_L(data_set, k=3, min_support=0.2)
  big_rules_list = generate_big_rules(L, support_data, min_conf=0.7)
  for Lk in L:
    print "="*50
    print "frequent " + str(len(list(Lk)[0])) + "-itemsets\t\tsupport"
    print "="*50
    for freq_set in Lk:
      print freq_set, support_data[freq_set]
  print
  print "Big Rules"
  for item in big_rules_list:
    print item[0], "=>", item[1], "conf: ", item[2]

代码运行结果截图如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

最后

以上就是聪明钢笔为你收集整理的浅谈Python实现Apriori算法介绍的全部内容,希望文章能够帮你解决浅谈Python实现Apriori算法介绍所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(141)

评论列表共有 0 条评论

立即
投稿
返回
顶部