概述
python是支持多线程的,主要是通过thread和threading这两个模块来实现的。thread模块是比较底层的模块,threading模块是对thread做了一些包装的,可以更加方便的使用。
虽然python的多线程受GIL限制,并不是真正的多线程,但是对于I/O密集型计算还是能明显提高效率,比如说爬虫。
下面用一个实例来验证多线程的效率。代码只涉及页面获取,并没有解析出来。
# -*-coding:utf-8 -*- import urllib2, time import threading class MyThread(threading.Thread): def __init__(self, func, args): threading.Thread.__init__(self) self.args = args self.func = func def run(self): apply(self.func, self.args) def open_url(url): request = urllib2.Request(url) html = urllib2.urlopen(request).read() print len(html) return html
if __name__ == '__main__': # 构造url列表 urlList = [] for p in range(1, 10): urlList.append('http://s.wanfangdata.com.cn/Paper.aspx?q=%E5%8C%BB%E5%AD%A6&p=' + str(p))
# 一般方式 n_start = time.time() for each in urlList: open_url(each) n_end = time.time() print 'the normal way take %s s' % (n_end-n_start)
# 多线程 t_start = time.time() threadList = [MyThread(open_url, (url,)) for url in urlList] for t in threadList: t.setDaemon(True) t.start() for i in threadList: i.join() t_end = time.time() print 'the thread way take %s s' % (t_end-t_start)
分别用两种方式获取10个访问速度比较慢的网页,一般方式耗时50s,多线程耗时10s。
多线程代码解读:
# 创建线程类,继承Thread类 class MyThread(threading.Thread): def __init__(self, func, args): threading.Thread.__init__(self) # 调用父类的构造函数 self.args = args self.func = func def run(self): # 线程活动方法 apply(self.func, self.args)
threadList = [MyThread(open_url, (url,)) for url in urlList] # 调用线程类创建新线程,返回线程列表 for t in threadList: t.setDaemon(True) # 设置守护线程,父线程会等待子线程执行完后再退出 t.start() # 线程开启 for i in threadList: i.join() # 等待线程终止,等子线程执行完后再执行父线程
以上就是本文的全部内容,希望对大家的学习有所帮助。
最后
以上就是聪明大炮为你收集整理的Python 爬虫多线程详解及实例代码的全部内容,希望文章能够帮你解决Python 爬虫多线程详解及实例代码所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复