概述
一、为什么要使用Python进行数据分析?
python拥有一个巨大的活跃的科学计算社区,拥有不断改良的库,能够轻松的集成C,C++,Fortran代码(Cython项目),可以同时用于研究和原型的构建以及生产系统的构建。
二、Python的优势与劣势:
1.Python是一种解释型语言,运行速度比编译型数据慢。
2.由于python有一个全局解释器锁(GIL),防止解释器同时执行多条python字节码,所以python不适用于高并发、多线程的应用程序。
三、使用Python进行数据分析常用的扩展包。
目前初始阶段的学习主要涉及4个包的安装:numpy、scipy、pandas、matplotlib
我笔记本里安装的是Python2.7版本,在安装了pip和setuptools工具,关于pip和setuptools工具的安装详见相关笔记。
最初使用的安装命令很简单:
pip install pandas pip install numpy pip install scipy pip install matplotlib
但是只安装成功了numpy和matplotlib两个包,pandas和scipy安装失败,查阅了相关资料发现可能是版本问题或者包的依赖相关。
最终在stack overflow发现了一个很棒的Python包提供网址:http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
--这里要Mark一下,后边争取写一个爬虫,搞下来所有的包防止丢失。
以上网址是加州大学欧文分校提供的Python相关库的下载地址,修改#后边的名字可以进去其他包的下载页面,此页面中提供了安装某个包需要依赖的前置包的说明,非常友好。
依赖包说明类似:
Pandas, a cross-section and time series data analysis toolkit. Requires numpy, dateutil, pytz, setuptools, and optionally numexpr, bottleneck, scipy, matplotlib, pytables, lxml, xarray, blosc, backports.lzma, statsmodels, sqlalchemy and other dependencies.
然后就是一堆的pandas下载地址。
最终根据各个包的相关性先安装了numpy+mkl的whl文件,然后是安装scipy最后是pandas。
安装的方法如下:
1.下载对应的4个包放在D:\目录下(很奇怪我笔记本是AMD64位的但是安装amd64版本的包报不支持的platform的错误,安装了32位的可以正常import)
2.cmd命令行进入D:\目录执行:pip install <包的全名>进行安装。(如果已安装了其他错误的版本,使用pip uninstall卸载)
最后使用如下类似命令查看包的安装位置:
以上这篇对Python进行数据分析_关于Package的安装问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
最后
以上就是隐形帅哥为你收集整理的对Python进行数据分析_关于Package的安装问题的全部内容,希望文章能够帮你解决对Python进行数据分析_关于Package的安装问题所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复