我是靠谱客的博主 愤怒抽屉,最近开发中收集的这篇文章主要介绍mapreduce标准过程,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Databean封装的value看序列化和反序列那一篇。

Databean的缺点:

1.继承的是writable没有compareTo方法只能进行value的封装而不能进行key的封装

和排序。

2.使用的是构造方法来进行一次性赋值,需要不停的new对象来赋值。

Mapreduce的缺点:

1.Map中context.write(new Text(tel), bean);需要每写一条new一个Text对象。

2.Reduce中DataBean bean = new DataBean("", up_sum, down_sum);

context.write(key, bean);

每写一个需要new一个对象和map一样;

DatanBean只能这样new的方法才能赋值。

首先看一个简单的mapreduce

import java.io.IOException;

 

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class DataCount {

 

public static class DCMapper extends Mapper<LongWritable, Text, Text, DataBean>{

 

@Override

protected void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

//accept

String line = value.toString();

//split

String[] fields = line.split("t");

String tel = fields[1];

long up = Long.parseLong(fields[8]);

long down = Long.parseLong(fields[9]);

DataBean bean = new DataBean(tel, up, down);

//send

context.write(new Text(tel), bean);

}

}

public static class DCReducer extends Reducer<Text, DataBean, Text, DataBean>{

 

@Override

protected void reduce(Text key, Iterable<DataBean> values, Context context)

throws IOException, InterruptedException {

long up_sum = 0;

long down_sum = 0;

for(DataBean bean : values){

up_sum += bean.getUpPayLoad();

down_sum += bean.getDownPayLoad();

}

DataBean bean = new DataBean("", up_sum, down_sum);

context.write(key, bean);

}

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf);

job.setJarByClass(DataCount.class);

job.setMapperClass(DCMapper.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(DataBean.class);

FileInputFormat.setInputPaths(job, new Path(args[0]));

job.setReducerClass(DCReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(DataBean.class);

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);

}

 

}

 

 

标准的mapreduce过程:

import java.io.IOException;

 

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class SumStep {

 

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf);

job.setJarByClass(SumStep.class);

job.setMapperClass(SumMapper.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(InfoBean.class);

FileInputFormat.setInputPaths(job, new Path(args[0]));

job.setReducerClass(SumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(InfoBean.class);

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);

}

 

public static class SumMapper extends Mapper<LongWritable, Text, Text, InfoBean>{

 

private InfoBean bean = new InfoBean();

private Text k = new Text();

@Override

protected void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

// split

String line = value.toString();

String[] fields = line.split("t");

// get useful field

String account = fields[0];

double income = Double.parseDouble(fields[1]);

double expenses = Double.parseDouble(fields[2]);

k.set(account);

bean.set(account, income, expenses);

context.write(k, bean);

}

}

public static class SumReducer extends Reducer<Text, InfoBean, Text, InfoBean>{

 

private InfoBean bean = new InfoBean();

@Override

protected void reduce(Text key, Iterable<InfoBean> v2s, Context context)

throws IOException, InterruptedException {

double in_sum = 0;

double out_sum = 0;

for(InfoBean bean : v2s){

in_sum += bean.getIncome();

out_sum += bean.getExpenses();

}

bean.set("", in_sum, out_sum);

context.write(key, bean);

}

}

}

Databean封装的value看序列化和反序列那一篇。

Databean的缺点:

1.继承的是writable没有compareTo方法只能进行value的封装而不能进行key的封装

和排序。

2.使用的是构造方法来进行一次性赋值,需要不停的new对象来赋值。

Mapreduce的缺点:

1.Map中context.write(new Text(tel), bean);需要每写一条new一个Text对象。

2.Reduce中DataBean bean = new DataBean("", up_sum, down_sum);

context.write(key, bean);

每写一个需要new一个对象和map一样;

DatanBean只能这样new的方法才能赋值。

 

最后

以上就是愤怒抽屉为你收集整理的mapreduce标准过程的全部内容,希望文章能够帮你解决mapreduce标准过程所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(100)

评论列表共有 0 条评论

立即
投稿
返回
顶部