概述
IIC通信协议详解
- 一、前言
- 1、IIC的概述
- 2、IIC分为软件IIC和硬件IIC
- 二、IIC通信协议
- 1、空闲状态
- 2、开始信号与停止信号
- 3、 应答信号
- 4、 发送数据
- 5、接收数据
- 三、STM32的IIC的IO初始化
一、前言
1、IIC的概述
IIC:两线式串行总线,它是由数据线SDA和时钟线SCL构成的串行总线,可发送和接收数据。
在CPU与被控IC之间、IC与IC之间进行双向传送,高速IIC总线一般可达400kbs以上。
时钟线SCL:在通信过程起到控制作用。
数据线SDA:用来一位一位的传送数据。
2、IIC分为软件IIC和硬件IIC
-
软件IIC:软件IIC通信指的是用单片机的两个I/O端口模拟出来的IIC,用软件控制管脚状态以模拟I2C通信波形,软件模拟寄存器的工作方式。
-
硬件IIC:一块硬件电路,硬件I2C对应芯片上的I2C外设,有相应I2C驱动电路,其所使用的I2C管脚也是专用的,硬件(固件)I2C是直接调用内部寄存器进行配置。
补充: -
硬件I2C的效率要远高于软件的,而软件I2C由于不受管脚限制,接口比较灵活。
-
IIC是半双工通信方式
二、IIC通信协议
IIC通信过程由开始、结束、发送、响应、接收五个部分构成。
-
(在发送、接收数据的时候)当SCL为高电平时,SDA线不允许变化;当SCL线为低电平时,SDA线可以任意0、1变化。
-
(在任意时候)只有当SCL为高电平时,IIC电路才对SDA线上的电平(0或者1)进行记录,当SCL线为低电平时,无论SDA是高还是低,IIC电路都不对SDA进行采样。
1、空闲状态
在介绍上面五个部分前,我们首先说说空闲状态,什么是空闲状态,就是没有通信时的状态(初始状态)
- I2C总线的SDA和SCL两条信号同时处于高电平时,规定为总线的空闲状态。此时各个器件的输出级场效管均处在截止状态,即释放总线,由两条信号线各自的上拉电阻把电平拉高。
2、开始信号与停止信号
- 开始信号:当SCL为高期间,SDA由高到低的跳变;启动信号是一种电平跳变时序信号,而不是一个电平。
- 停止信号:当SCL为高期间,SDA由低到高的跳变;停止信号也是一种电平跳变时序信号,而不是一个电平信号。
开始信号程序:
//产生IIC起始信号
//1.设置SDA输出
//2.先拉高SDA,再拉高SCL,空闲状态
//3.拉低SDA
//4.准备接收数据
void IIC_Start(void)
{
SDA_OUT(); //sda线输出
IIC_SDA=1;
IIC_SCL=1;
delay_us(4);
IIC_SDA=0;//START:when CLK is high,DATA change form high to low
delay_us(4);
IIC_SCL=0;//钳住I2C总线,准备发送或接收数据
}
停止信号程序:
//产生IIC停止信号
//1.设置SDA输出
//2.先拉低SDA,再拉低SCL
//3.拉高SCL
//4.拉高SDA
//5.停止接收数据
void IIC_Stop(void)
{
SDA_OUT();//sda线输出
IIC_SCL=0;
IIC_SDA=0;//STOP:when CLK is high DATA change form low to high
delay_us(4);
IIC_SCL=1;
IIC_SDA=1;//发送I2C总线结束信号
delay_us(4);
}
3、 应答信号
- 发送器每发送一个字节,就在时钟脉冲9期间释放数据先,由接收器反馈一个应答信号。应答信号为低电平时,规定为有效应答位(ACK简称应答位),表示接收器已经成功接收了该字节;应答信号为高电平时,规定为非应答位(NACK),一般表示接收器接收该字节没有成功。
- 对于反馈有效应答位ACK的要求是,接收器在第9个时钟脉冲之前的低电平期间将SDA线拉低,并且确保在该时钟的高电平期间位稳定的低电平。如果接收器是主控器,则在它收到最后一个字节后,发送一个NACK信号,以通知被控发送器结束数据发送,并释放SDA线,以便主控接收器发送一个停止信号P
每当主机向从机发送完一个字节(8bit)的数据,主机总是需要等待从机给出一个应答信号,以确认从机是否成功接收到了数据,从机应答主机所需要的时钟仍是主机提供的,应答出现在每一次主机完成8个数据位传输后紧跟着的时钟周期,低电平0表示应答,1表示非应答:
应答程序
//产生ACK应答
//这里就很清楚了,产生应答:SCL在SDA一直为低电平期间完成低高电平转换
void IIC_Ack(void)
{
IIC_SCL=0;
SDA_OUT();
IIC_SDA=0;
delay_us(2);
IIC_SCL=1;
delay_us(2);
IIC_SCL=0;
}
//不产生ACK应答
//这里就很清楚了,不产生应答:SCL在SDA一直为高电平期间完成低高电平转换
void IIC_NAck(void)
{
IIC_SCL=0;
SDA_OUT();
IIC_SDA=1;
delay_us(2);
IIC_SCL=1;
delay_us(2);
IIC_SCL=0;
}
4、 发送数据
- 在I2C总线上传送的每位数据都有一个时钟脉冲相对应(或同步控制),即在SCL串行时钟的配合下,SDA逐位地串行传送每一位数据。数据位的传输是边沿触发。
发送程序
//IIC发送一个字节
//返回从机有无应答
//1,有应答
//0,无应答
//IIC_SCL=0;
//在SCL上升沿时准备好数据,进行传送数据时,拉高拉低SDA,因为传输一个字节,一个SCL脉冲里传输一个位。
//数据传输过程中,数据传输保持稳定(在SCL高电平期间,SDA一直保持稳定,没有跳变)
//只有当SCL被拉低后,SDA才能被改变
//总结:在SCL为高电平期间,发送数据,发送8次数据,数据为1,SDA被拉高,数据为0,SDA被拉低。
//传输期间保持传输稳定,所以数据线仅可以在时钟SCL为低电平时改变。
void IIC_Send_Byte(u8 txd)
{
u8 t;
SDA_OUT();
IIC_SCL=0;//拉低时钟开始数据传输
for(t=0;t<8;t++)
{
//IIC_SDA=(txd&0x80)>>7;
//获取数据的最高位,然后左移7位
//如果某位为1,则SDA为1,否则相反
if((txd&0x80)>>7)
IIC_SDA=1;
else
IIC_SDA=0;
txd<<=1;
delay_us(2); //对TEA5767这三个延时都是必须的
IIC_SCL=1;
delay_us(2);
IIC_SCL=0;
delay_us(2);
}
}
单片机发送完一个字节后面必须跟一个等外应答函数:
思路:先让SDA=1,再判断在一定时间内SDA是否变为0,从而识别出外设有没有发送应答信号。
//等待应答信号到来
//返回值:1,接收应答失败
// 0,接收应答成功
//1.设置SDA为输入
//2.拉高SDA
//3.拉高SCL
//4.等待接收器返回应答信号,如果数据线SDA一直为高,就一直等待,并返回1(无效应答),如果数据线SDA为低,返回0(有效应答)
u8 IIC_Wait_Ack(void)
{
u8 ucErrTime=0;
SDA_IN(); //SDA设置为输入
IIC_SDA=1;delay_us(1);
IIC_SCL=1;delay_us(1);
while(READ_SDA)
{
ucErrTime++;
if(ucErrTime>250)
{
IIC_Stop();
return 1;
}
}
IIC_SCL=0;//时钟输出0
return 0;
}
5、接收数据
发送数据是一位一位发送,接收数据也是一位一位接收进来,最后返回应答信号:
接收程序
//读1个字节,ack=1时,发送ACK,ack=0,发送nACK
//先拉低SCL,延时后拉高
//读取数据
//是否发送应答
u8 IIC_Read_Byte(unsigned char ack)
{
unsigned char i,receive=0;
SDA_IN();//SDA设置为输入
for(i=0;i<8;i++ )
{
IIC_SCL=0;
delay_us(2);
IIC_SCL=1;
receive<<=1;
if(READ_SDA)receive++;
delay_us(1);
}
if (!ack)
IIC_NAck();//发送nACK
else
IIC_Ack(); //发送ACK
return receive;
}
三、STM32的IIC的IO初始化
//初始化 IIC
void IIC_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);//使能 GPIOB 时钟
//GPIOB8,B9 初始化设置
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//普通输出模式
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉
GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化
IIC_SCL=1;
IIC_SDA=1;
}
注: 该部分为 IIC 驱动代码,实现包括 IIC 的初始化(IO 口)、IIC 开始、IIC 结束、ACK、IIC读写等功能,在其他函数里面,只需要调用相关的 IIC 函数就可以和外部 IIC 器件通信了,该段代码可以用在任何 IIC 设备上。
打开 myiic.h 头文件可以看到,我们除了函数申明之外,还定义了几个宏定义标识符:
//IO 方向设置
#define SDA_IN() {GPIOB->MODER&=~(3<<(9*2));GPIOB->MODER|=0<<9*2;}
//PB9 输入模式
#define SDA_OUT() {GPIOB->MODER&=~(3<<(9*2));GPIOB->MODER|=1<<9*2;}
//PB9 输出模式
//IO 操作函数
#define IIC_SCL PBout(8) //SCL
#define IIC_SDA PBout(9) //SDA
#define READ_SDA PBin(9) //输入 SDA
该部分代码的 SDA_IN()和 SDA_OUT()分别用于设置 IIC_SDA 接口为输入和输出,是 IO 口的使用。其他几个宏定义就是我们通过位带实现 IO 口操作。
最后
以上就是舒服水池为你收集整理的IIC通信协议详解一、前言二、IIC通信协议三、STM32的IIC的IO初始化的全部内容,希望文章能够帮你解决IIC通信协议详解一、前言二、IIC通信协议三、STM32的IIC的IO初始化所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复