概述
1,场景
spark的transformation和action操作乃spark的核心,让我们走进他们,领略他们的魅力!
2,transformation和action介绍
Spark支持两种RDD操作:transformation和action。transformation操作会针对已有的RDD创建一个新的RDD;而action则主要是对RDD进行最后的操作,比如遍历、reduce、保存到文件等,并可以返回结果给Driver程序。
2.1,常用transformation:
操作 | 介绍 |
---|---|
map | 将RDD中的每个元素传入自定义函数,获取一个新的元素,然后用新的元素组成新的RDD |
filter | 对RDD中每个元素进行判断,如果返回true则保留,返回false则剔除 |
flatMap | 与map类似,但是对每个元素都可以返回一个或多个新元素 |
gropuByKey | 根据key进行分组,每个key对应一个Iterable |
reduceByKey | 对每个key对应的value进行reduce操作 |
sortByKey | 对每个key对应的value进行排序操作 |
join | 对两个包含对的RDD进行join操作,每个key join上的pair,都会传入自定义函数进行处理 |
cogroup | 同join,但是是每个key对应的Iterable都会传入自定义函数进行处理 |
2.2,常用action介绍
操作 | 介绍 |
---|---|
reduce | 将RDD中的所有元素进行聚合操作。第一个和第二个元素聚合,值与第三个元素聚合,值与第四个元素聚合,以此类推 |
collect | 将RDD中所有元素获取到本地客户端 |
count | 获取RDD元素总数 |
take(n) | 获取RDD中前n个元素 |
saveAsTextFile | 将RDD元素保存到文件中,对每个元素调用toString方法 |
countByKey | 对每个key对应的值进行count计数 |
foreach | 遍历RDD中的每个元素 |
3,实战代码
package cn.spark.study.core;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
/**
* transformation操作实战
* @author Administrator
*
*/
@SuppressWarnings(value = {"unused", "unchecked"})
public class TransformationOperation {
public static void main(String[] args) {
// map();
// filter();
// flatMap();
// groupByKey();
// reduceByKey();
// sortByKey();
// join();
cogroup();
}
/**
* map算子案例:将集合中每一个元素都乘以2
*/
private static void map() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("map")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 构造集合
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
// 创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 使用map算子,将集合中的每个元素都乘以2
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(
new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1) throws Exception {
return v1 * 2;
}
});
// 打印新的RDD
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
/**
* filter算子案例:过滤集合中的偶数
*/
private static void filter() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("filter")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
// 创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 对初始RDD执行filter算子,过滤出其中的偶数
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(
new Function<Integer, Boolean>() {
private static final long serialVersionUID = 1L;
@Override
public Boolean call(Integer v1) throws Exception {
return v1 % 2 == 0;
}
});
// 打印新的RDD
evenNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
/**
* flatMap案例:将文本行拆分为多个单词
*/
private static void flatMap() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("flatMap")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 构造集合
List<String> lineList = Arrays.asList("hello you", "hello me", "hello world");
// 创建RDD
JavaRDD<String> lines = sc.parallelize(lineList);
// 对RDD执行flatMap算子,将每一行文本,拆分为多个单词
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
private static final long serialVersionUID = 1L;
@Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
// 打印新的RDD
words.foreach(new VoidFunction<String>() {
private static final long serialVersionUID = 1L;
@Override
public void call(String t) throws Exception {
System.out.println(t);
}
});
// 关闭JavaSparkContext
sc.close();
}
/**
* groupByKey案例:按照班级对成绩进行分组
*/
private static void groupByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("groupByKey")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<String, Integer>> scoreList = Arrays.asList(
new Tuple2<String, Integer>("class1", 80),
new Tuple2<String, Integer>("class2", 75),
new Tuple2<String, Integer>("class1", 90),
new Tuple2<String, Integer>("class2", 65));
// 创建JavaPairRDD
JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
// 针对scores RDD,执行groupByKey算子,对每个班级的成绩进行分组
JavaPairRDD<String, Iterable<Integer>> groupedScores = scores.groupByKey();
// 打印groupedScores RDD
groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, Iterable<Integer>> t)
throws Exception {
System.out.println("class: " + t._1);
Iterator<Integer> ite = t._2.iterator();
while(ite.hasNext()) {
System.out.println(ite.next());
}
System.out.println("==============================");
}
});
// 关闭JavaSparkContext
sc.close();
}
/**
* reduceByKey案例:统计每个班级的总分
*/
private static void reduceByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("reduceByKey")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<String, Integer>> scoreList = Arrays.asList(
new Tuple2<String, Integer>("class1", 80),
new Tuple2<String, Integer>("class2", 75),
new Tuple2<String, Integer>("class1", 90),
new Tuple2<String, Integer>("class2", 65));
// 创建JavaPairRDD
JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
// 针对scores RDD,执行reduceByKey算子
JavaPairRDD<String, Integer> totalScores = scores.reduceByKey(
new Function2<Integer, Integer, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
// 打印totalScores RDD
totalScores.foreach(new VoidFunction<Tuple2<String,Integer>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t._1 + ": " + t._2);
}
});
// 关闭JavaSparkContext
sc.close();
}
/**
* sortByKey案例:按照学生分数进行排序
*/
private static void sortByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("sortByKey")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<Integer, String>> scoreList = Arrays.asList(
new Tuple2<Integer, String>(65, "leo"),
new Tuple2<Integer, String>(50, "tom"),
new Tuple2<Integer, String>(100, "marry"),
new Tuple2<Integer, String>(80, "jack"));
// 创建RDD
JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList);
// 对scores RDD执行sortByKey算子
JavaPairRDD<Integer, String> sortedScores = scores.sortByKey(false);
// 打印sortedScored RDD
sortedScores.foreach(new VoidFunction<Tuple2<Integer,String>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<Integer, String> t) throws Exception {
System.out.println(t._1 + ": " + t._2);
}
});
// 关闭JavaSparkContext
sc.close();
}
/**
* join案例:打印学生成绩
*/
private static void join() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("join")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<Integer, String>> studentList = Arrays.asList(
new Tuple2<Integer, String>(1, "leo"),
new Tuple2<Integer, String>(2, "jack"),
new Tuple2<Integer, String>(3, "tom"));
List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
new Tuple2<Integer, Integer>(1, 100),
new Tuple2<Integer, Integer>(2, 90),
new Tuple2<Integer, Integer>(3, 60));
// 并行化两个RDD
JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
// 使用join算子关联两个RDD
JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = students.join(scores);
// 打印studnetScores RDD
studentScores.foreach(
new VoidFunction<Tuple2<Integer,Tuple2<String,Integer>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<Integer, Tuple2<String, Integer>> t)
throws Exception {
System.out.println("student id: " + t._1);
System.out.println("student name: " + t._2._1);
System.out.println("student score: " + t._2._2);
System.out.println("===============================");
}
});
// 关闭JavaSparkContext
sc.close();
}
/**
* cogroup案例:打印学生成绩
*/
private static void cogroup() {
// 创建SparkConf
SparkConf conf = new SparkConf()
.setAppName("cogroup")
.setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<Integer, String>> studentList = Arrays.asList(
new Tuple2<Integer, String>(1, "leo"),
new Tuple2<Integer, String>(2, "jack"),
new Tuple2<Integer, String>(3, "tom"));
List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
new Tuple2<Integer, Integer>(1, 100),
new Tuple2<Integer, Integer>(2, 90),
new Tuple2<Integer, Integer>(3, 60),
new Tuple2<Integer, Integer>(1, 70),
new Tuple2<Integer, Integer>(2, 80),
new Tuple2<Integer, Integer>(3, 50));
// 并行化两个RDD
JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
// cogroup与join不同
// 相当于是,一个key join上的所有value,都给放到一个Iterable里面去了
JavaPairRDD<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> studentScores =
students.cogroup(scores);
// 打印studnetScores RDD
studentScores.foreach(
new VoidFunction<Tuple2<Integer,Tuple2<Iterable<String>,Iterable<Integer>>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(
Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> t)
throws Exception {
System.out.println("student id: " + t._1);
System.out.println("student name: " + t._2._1);
System.out.println("student score: " + t._2._2);
System.out.println("===============================");
}
});
// 关闭JavaSparkContext
sc.close();
}## 标题 ##
}
4,总结
作为spark的初学者,关键是要动手把transformation和action算子敲熟,为以后的进阶打好基础。
最后
以上就是瘦瘦睫毛膏为你收集整理的Spark常用transformation和action操作的全部内容,希望文章能够帮你解决Spark常用transformation和action操作所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复