我是靠谱客的博主 踏实小海豚,最近开发中收集的这篇文章主要介绍Spark2.x学习笔记:Spark SQL程序设计,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1、RDD的局限性

  • RDD仅表示数据集,RDD没有元数据,也就是说没有字段语义定义。
  • RDD需要用户自己优化程序,对程序员要求较高。
  • 从不同数据源读取数据相对困难。
  • 合并多个数据源中的数据也较困难。

2 DataFrame和Dataset

(1)DataFrame 
由于RDD的局限性,Spark产生了DataFrame。 
DataFrame=RDD+Schema 
其中Schema是就是元数据,是语义描述信息。 
在Spark1.3之前,DataFrame被称为SchemaRDD。以行为单位构成的分布式数据集合,按照列赋予不同的名称。对select、filter、aggregation和sort等操作符的抽象。

  • 内部数据无类型,统一为Row
  • DataFrame是一种特殊类型的Dataset
  • DataFrame自带优化器Catalyst,可以自动优化程序。
  • DataFrame提供了一整套的Data Source API。

(2)Dataset 
由于DataFrame的数据类型统一是Row,所以DataFrame也是有缺点的。

    • Row运行时类型检查 
      比如salary是字符串类型,下面语句也只有运行时才进行类型检查。
dataframe.filter("salary>1000").show()
  • Row不能直接操作domain对象
  • 函数风格编程,没有面向对象风格的API

所以,Spark SQL引入了Dataset,扩展了DataFrame API,提供了编译时类型检查,面向对象风格的API。 
Dataset可以和DataFrame、RDD相互转换。 

DataFrame = Dataset[Row]

可见DataFrame是一种特殊的Dataset。

3 为什么需要DataFrame和Dataset?

我们知道Spark SQL提供了两种方式操作数据:

  • SQL查询
  • DataFrame和Dataset API

既然Spark SQL提供了SQL访问方式,那为什么还需要DataFrame和Dataset的API呢? 
这是因为SQL语句虽然简单,但是SQL的表达能力却是有限的(所以Oracle数据库提供了PL/SQL)。DataFrame和Dataset可以采用更加通用的语言(Scala或Python)来表达用户的查询请求。此外,Dataset可以更快扑捉错误,因为SQL是运行时捕获异常,而Dataset是编译时检查错误。

4 基本步骤

  • 创建SparkSession对象 
    SparkSession封装了Spark SQL执行环境信息,是所有Spark SQL程序唯一的入口。
  • 创建DataFrame或Dataset 
    Spark SQL支持多种数据源
  • 在DataFrame或Dataset之上进行转换和Action 
    Spark SQL提供了多钟转换和Action函数
  • 返回结果 
    保存结果到HDFS中,或直接打印出来 。

步骤1:创建SparkSession对象

val spark=SparkSessin.builder
        .master("local")
        .appName("spark session example")
        .getOrCreate()

注意:SparkSession中封装了spark.sparkContext和spark.sqlContext 
后面所有程序或程序片段中出现的spark变量均是SparkSession对象

将RDD隐式转换为DataFrame

import spark.implicits._

步骤2:创建DataFrame或Dataset 
提供了读写各种格式数据的API,包括常见的JSON,JDBC,Parquet,HDFS

步骤3:在DataFrame或Dataset之上进行各种操作 

5 实例演示

(1)进入spark-shell

[root@node1 ~]# spark-shell
17/10/13 10:05:57 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Spark context Web UI available at http://192.168.80.131:4040
Spark context available as 'sc' (master = local[*], app id = local-1507903559300).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _ / _ / _ `/ __/  '_/
   /___/ .__/_,_/_/ /_/_   version 2.2.0
      /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
Type in expressions to have them evaluated.
Type :help for more information.

scala> 

这里的Spark session对象是对Spark context对象的进一步封装。也就是说Spark session对象(spark)中的SparkContext就是Spark context对象(sc),从下面输出信息可以验证。 

scala> spark.sparkContext
res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@7bd7c4cf

scala> println(sc)
org.apache.spark.SparkContext@7bd7c4cf

scala>

(2)导入org.apache.spark.sql.Row

scala> import org.apache.spark.sql.Row
import org.apache.spark.sql.Row

(3)定义case class

scala> case class User(userID:Long,gender:String,age:Int,occupation:String,zipcode:String)
defined class User

scala> val usersRDD=sc.textFile("file:///root/data/ml-1m/users.dat")
usersRDD: org.apache.spark.rdd.RDD[String] = file:///root/data/ml-1m/users.dat MapPartitionsRDD[3] at textFile at <console>:25

scala> usersRDD.count

(4)case class作为RDD的schema

scala> val userRDD =usersRDD.map(_.split("::")).map(p=>User(p(0).toLong,p(1).trim,p(2).toInt,p(3),p(4)))
userRDD: org.apache.spark.rdd.RDD[User] = MapPartitionsRDD[5] at map at <console>:29

(5)通过RDD.toDF将RDD转换为DataFrame

scala> val userDF=userRDD.toDF
userDF: org.apache.spark.sql.DataFrame = [userID: bigint, gender: string ... 3 more fields]

(6)查看DataFrame所以方法 
输入userDF.,然后tab键,可以看到DataFrame所以方法

scala> userDF.
agg                             cube               hint             randomSplitAsList      take                
alias                           describe           inputFiles       rdd                    takeAsList          
apply                           distinct           intersect        reduce                 toDF                
as                              drop               isLocal          registerTempTable      toJSON              
cache                           dropDuplicates     isStreaming      repartition            toJavaRDD           
checkpoint                      dtypes             javaRDD          rollup                 toLocalIterator     
coalesce                        except             join             sample                 toString            
col                             explain            joinWith         schema                 transform           
collect                         explode            limit            select                 union               
collectAsList                   filter             map              selectExpr             unionAll            
columns                         first              mapPartitions    show                   unpersist           
count                           flatMap            na               sort                   where               
createGlobalTempView            foreach            orderBy          sortWithinPartitions   withColumn          
createOrReplaceGlobalTempView   foreachPartition   persist          sparkSession           withColumnRenamed   
createOrReplaceTempView         groupBy            printSchema      sqlContext             withWatermark       
createTempView                  groupByKey         queryExecution   stat                   write               
crossJoin                       head               randomSplit      storageLevel           writeStream         

scala>

(7)输出DataFrame的Schema 

scala> userDF.printSchema
root
 |-- userID: long (nullable = false)
 |-- gender: string (nullable = true)
 |-- age: integer (nullable = false)
 |-- occupation: string (nullable = true)
 |-- zipcode: string (nullable = true)

(8)DataFrame的其他方法 

scala> userDF.first
res5: org.apache.spark.sql.Row = [1,F,1,10,48067]

scala> userDF.take(10)
res6: Array[org.apache.spark.sql.Row] = Array([1,F,1,10,48067], [2,M,56,16,70072], [3,M,25,15,55117], [4,M,45,7,02460], [5,M,25,20,55455], [6,F,50,9,55117], [7,M,35,1,06810], [8,M,25,12,11413], [9,M,25,17,61614], [10,F,35,1,95370])

scala>

(9)查看DataFrame可以转化的数据格式 
输入userDF.write.,然后tab键,可以看到DataFrame可以转化的数据格式 

scala> userDF.write.
bucketBy   format       jdbc   mode     options   parquet       save          sortBy      
csv        insertInto   json   option   orc       partitionBy   saveAsTable   text        

scala>

(10)将DataFrame数据以JSON格式写入HDFS

scala> userDF.write.json("/tmp/json")

scala>

(11)查看HDFS

[root@node1 ~]# hdfs dfs -ls /tmp/json
Found 2 items
-rw-r--r--   3 root supergroup          0 2017-10-13 10:31 /tmp/json/_SUCCESS
-rw-r--r--   3 root supergroup     442408 2017-10-13 10:31 /tmp/json/part-00000-6f19a241-2f72-4a06-a6bc-81706c89bf5b-c000.json
[root@node1 ~]# 

(12)也可以写入本地

scala> userDF.write.json("file:///tmp/json")
[root@node1 ~]# ls /tmp/json
part-00000-66aa0658-0343-4659-a809-468e4fde23a5-c000.json  _SUCCESS
[root@node1 ~]# tail -5 /tmp/json/part-00000-66aa0658-0343-4659-a809-468e4fde23a5-c000.json
{"userID":6036,"gender":"F","age":25,"occupation":"15","zipcode":"32603"}
{"userID":6037,"gender":"F","age":45,"occupation":"1","zipcode":"76006"}
{"userID":6038,"gender":"F","age":56,"occupation":"1","zipcode":"14706"}
{"userID":6039,"gender":"F","age":45,"occupation":"0","zipcode":"01060"}
{"userID":6040,"gender":"M","age":25,"occupation":"6","zipcode":"11106"}
[root@node1 ~]# 

(13)查看Spark SQL可以读的数据格式

scala> val df=spark.read.
csv   format   jdbc   json   load   option   options   orc   parquet   schema   table   text   textFile

scala>

(14)将JSON文件转化为DataFrame

scala> val df=spark.read.json("/tmp/json")
df: org.apache.spark.sql.DataFrame = [age: bigint, gender: string ... 3 more fields]

scala> df.take(2)
res9: Array[org.apache.spark.sql.Row] = Array([1,F,10,1,48067], [56,M,16,2,70072])

scala>

(15)再将DataFrame转化为ORC格式数据(该格式文件是二进制文件)

scala> df.write.orc("file:///tmp/orc")
[root@node1 ~]# ls /tmp/orc
part-00000-09cf3025-cc71-4a76-a35d-a7cef4885be8-c000.snappy.orc  _SUCCESS
[root@node1 ~]#

(16)读取目录/tmp/orc下的所有orc文件

scala> val orcDF=spark.read.orc("file:///tmp/orc")
orcDF: org.apache.spark.sql.DataFrame = [age: bigint, gender: string ... 3 more fields]

scala> orcDF.first
res11: org.apache.spark.sql.Row = [1,F,10,1,48067]

scala>

6 select和filter

(1)select

scala> userDF.select("UserID","age").show
+------+---+
|UserID|age|
+------+---+
|     1|  1|
|     2| 56|
|     3| 25|
|     4| 45|
|     5| 25|
|     6| 50|
|     7| 35|
|     8| 25|
|     9| 25|
|    10| 35|
|    11| 25|
|    12| 25|
|    13| 45|
|    14| 35|
|    15| 25|
|    16| 35|
|    17| 50|
|    18| 18|
|    19|  1|
|    20| 25|
+------+---+
only showing top 20 rows


scala> userDF.select("UserID","age").show(2)
+------+---+
|UserID|age|
+------+---+
|     1|  1|
|     2| 56|
+------+---+
only showing top 2 rows

scala> userDF.selectExpr("UserID","ceil(age/10) as newAge").show(2)
+------+------+
|UserID|newAge|
+------+------+
|     1|     1|
|     2|     6|
+------+------+
only showing top 2 rows

scala> userDF.select(max('age),min('age),avg('age)).show(2)
+--------+--------+------------------+
|max(age)|min(age)|          avg(age)|
+--------+--------+------------------+
|      56|       1|30.639238410596025|
+--------+--------+------------------+

**(2)filter**
scala> userDF.filter(userDF("age")>30).show(2)
+------+------+---+----------+-------+
|userID|gender|age|occupation|zipcode|
+------+------+---+----------+-------+
|     2|     M| 56|        16|  70072|
|     4|     M| 45|         7|  02460|
+------+------+---+----------+-------+
only showing top 2 rows


scala> userDF.filter("age>30 and occupation=10").show(2)
+------+------+---+----------+-------+
|userID|gender|age|occupation|zipcode|
+------+------+---+----------+-------+
|  4562|     M| 35|        10|  94133|
|  5223|     M| 56|        10|  11361|
+------+------+---+----------+-------+


scala>

(3)select和filter组合 

scala> userDF.select("userID","age").filter("age>30").show(2)
+------+---+
|userID|age|
+------+---+
|     2| 56|
|     4| 45|
+------+---+
only showing top 2 rows


scala> userDF.filter("age>30").select("userID","age").show(2)
+------+---+
|userID|age|
+------+---+
|     2| 56|
|     4| 45|
+------+---+
only showing top 2 rows

7 groupBy 

scala> userDF.groupBy("age").count.show
+---+-----+                                                                     
|age|count|
+---+-----+
|  1|  222|
| 35| 1193|
| 50|  496|
| 45|  550|
| 25| 2096|
| 56|  380|
| 18| 1103|
+---+-----+


scala> userDF.groupBy("age").agg(count('gender),countDistinct('occupation)).show
+---+-------------+--------------------------+                                  
|age|count(gender)|count(DISTINCT occupation)|
+---+-------------+--------------------------+
|  1|          222|                        13|
| 35|         1193|                        21|
| 50|          496|                        20|
| 45|          550|                        20|
| 25|         2096|                        20|
| 56|          380|                        20|
| 18|         1103|                        20|
+---+-------------+--------------------------+


scala> userDF.groupBy("age").agg("gender"->"count","occupation"->"count").show
+---+-------------+-----------------+
|age|count(gender)|count(occupation)|
+---+-------------+-----------------+
|  1|          222|              222|
| 35|         1193|             1193|
| 50|          496|              496|
| 45|          550|              550|
| 25|         2096|             2096|
| 56|          380|              380|
| 18|         1103|             1103|
+---+-------------+-----------------+


scala> 

8 join

问题:求解看过movieID=2116电影的观众的性别与年龄的分布。 
(1)Users DataFrame

scala> userDF.printSchema
root
 |-- userID: long (nullable = false)
 |-- gender: string (nullable = true)
 |-- age: integer (nullable = false)
 |-- occupation: string (nullable = true)
 |-- zipcode: string (nullable = true)

scala>

(2)Ratings DataFrame 

scala> case class Rating(userID:Long,movieID:Long,Rating:Int,Timestamp:String)
defined class Rating

scala> val ratingsRDD=sc.textFile("file:///root/data/ml-1m/ratings.dat")
ratingsRDD: org.apache.spark.rdd.RDD[String] = file:///root/data/ml-1m/ratings.dat MapPartitionsRDD[65] at textFile at <console>:25

scala> val ratingRDD =ratingsRDD.map(_.split("::")).map(p=>Rating(p(0).toLong,p(1).toLong,p(2).toInt,p(3)))
ratingRDD: org.apache.spark.rdd.RDD[Rating] = MapPartitionsRDD[67] at map at <console>:29

scala> val ratingDF=ratingRDD.toDF
ratingDF: org.apache.spark.sql.DataFrame = [userID: bigint, movieID: bigint ... 2 more fields]

scala> scala> ratingDF.printSchema
root
 |-- userID: long (nullable = false)
 |-- movieID: long (nullable = false)
 |-- Rating: integer (nullable = false)
 |-- Timestamp: string (nullable = true)

scala>

(2)join 

scala> val mergeredDF=ratingDF.filter("movieID=2116").join(userDF,"userID").select("gender","age").groupBy("gender","age").count
mergeredDF: org.apache.spark.sql.DataFrame = [gender: string, age: int ... 1 more field]

scala> mergeredDF.show
+------+---+-----+                                                              
|gender|age|count|
+------+---+-----+
|     M| 18|   72|
|     F| 18|    9|
|     M| 56|    8|
|     M| 45|   26|
|     F| 45|    3|
|     M| 25|  169|
|     F| 56|    2|
|     M|  1|   13|
|     F|  1|    4|
|     F| 50|    3|
|     M| 50|   22|
|     F| 25|   28|
|     F| 35|   13|
|     M| 35|   66|
+------+---+-----+

scala> 

9 临时表 

scala> userDF.createOrReplaceTempView("users")

scala> val groupedUsers=spark.sql("select gender,age,count(*) as num from users group by gender, age")
groupedUsers: org.apache.spark.sql.DataFrame = [gender: string, age: int ... 1 more field]

scala> groupedUsers.show
+------+---+----+                                                               
|gender|age| num|
+------+---+----+
|     M| 18| 805|
|     F| 18| 298|
|     M| 56| 278|
|     M| 45| 361|
|     F| 45| 189|
|     M| 25|1538|
|     F| 56| 102|
|     M|  1| 144|
|     F|  1|  78|
|     F| 50| 146|
|     M| 50| 350|
|     F| 25| 558|
|     F| 35| 338|
|     M| 35| 855|
+------+---+----+


scala>

注意:在Spark程序运行中,临时表才存在。当Spark程序运行结束,临时表也被销毁。

10 Spark SQL的表

(1)Session范围内的临时表

  • df.createOrReplaceTempView(“tableName”)
  • 只在Session范围内有效,Session结束临时表自动销毁

(2)全局范围内的临时表

  • df.createGlobalTempView(“tableName”)
  • 所有Session共享
scala> userDF.createGlobalTempView("users")

scala> spark.sql("select * from global_temp.users").show
+------+------+---+----------+-------+
|userID|gender|age|occupation|zipcode|
+------+------+---+----------+-------+
|     1|     F|  1|        10|  48067|
|     2|     M| 56|        16|  70072|
|     3|     M| 25|        15|  55117|
|     4|     M| 45|         7|  02460|
|     5|     M| 25|        20|  55455|
|     6|     F| 50|         9|  55117|
|     7|     M| 35|         1|  06810|
|     8|     M| 25|        12|  11413|
|     9|     M| 25|        17|  61614|
|    10|     F| 35|         1|  95370|
|    11|     F| 25|         1|  04093|
|    12|     M| 25|        12|  32793|
|    13|     M| 45|         1|  93304|
|    14|     M| 35|         0|  60126|
|    15|     M| 25|         7|  22903|
|    16|     F| 35|         0|  20670|
|    17|     M| 50|         1|  95350|
|    18|     F| 18|         3|  95825|
|    19|     M|  1|        10|  48073|
|    20|     M| 25|        14|  55113|
+------+------+---+----------+-------+
only showing top 20 rows


scala> spark.newSession().sql("select * from global_temp.users").show
+------+------+---+----------+-------+
|userID|gender|age|occupation|zipcode|
+------+------+---+----------+-------+
|     1|     F|  1|        10|  48067|
|     2|     M| 56|        16|  70072|
|     3|     M| 25|        15|  55117|
|     4|     M| 45|         7|  02460|
|     5|     M| 25|        20|  55455|
|     6|     F| 50|         9|  55117|
|     7|     M| 35|         1|  06810|
|     8|     M| 25|        12|  11413|
|     9|     M| 25|        17|  61614|
|    10|     F| 35|         1|  95370|
|    11|     F| 25|         1|  04093|
|    12|     M| 25|        12|  32793|
|    13|     M| 45|         1|  93304|
|    14|     M| 35|         0|  60126|
|    15|     M| 25|         7|  22903|
|    16|     F| 35|         0|  20670|
|    17|     M| 50|         1|  95350|
|    18|     F| 18|         3|  95825|
|    19|     M|  1|        10|  48073|
|    20|     M| 25|        14|  55113|
+------+------+---+----------+-------+
only showing top 20 rows

scala> 

(3)将DataFrame或Dataset持久化到Hive中  

df.write.mode(“overwrite”).saveAsTable(“database.tableName”)

最后

以上就是踏实小海豚为你收集整理的Spark2.x学习笔记:Spark SQL程序设计的全部内容,希望文章能够帮你解决Spark2.x学习笔记:Spark SQL程序设计所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(38)

评论列表共有 0 条评论

立即
投稿
返回
顶部