概述
1 最短路径问题(The shortest-path problem, SPP)
最短路径问题是图论研究中的一个经典算法问题,旨在寻找图中两结点之间的最短路径。 算法具体的形式包括:
1) 确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题。
2) 确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
3)确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。
4)全局最短路径问题 - 求图中所有的最短路径。
最短路径在导航中有重要应用,如从出发地到目的地的最短路径,从救灾处到受灾处的最短路径等。
各最短路径算法比较
2 Dijkstra(迪杰斯特拉)算法
2.1 定义
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。举例来说,如果图中的顶点表示城市,而边上的权重表示著城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。
2.2 算法描述
这个算法是通过为每个顶点 v 保留目前为止所找到的从s到v的最短路径来工作的。初始时,原点 s 的路径长度值被赋为 0 (d[s] = 0),若存在能直接到达的边(s,m),则把d[m]设为w(s,m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大,即表示我们不知道任何通向这些顶点的路径(对于 V 中所有顶点 v 除 s 和上述 m 外 d[v] = ∞)。当算法退出时,d[v] 中存储的便是从 s 到 v 的最短路径,或者如果路径不存在的话是无穷大。 Dijkstra 算法的基础操作是边的拓展:如果存在一条从 u 到 v 的边,那么从 s 到 v 的最短路径可以通过将边(u, v)添加到尾部来拓展一条从 s 到 u 的路径。这条路径的长度是 d[u] + w(u, v)。如果这个值比目前已知的 d[v] 的值要小,我们可以用新值来替代当前 d[v] 中的值。拓展边的操作一直运行到所有的 d[v] 都代表从 s 到 v 最短路径的花费。这个算法经过组织因而当d[u] 达到它最终的值的时候每条边(u, v)都只被拓展一次。
算法维护两个顶点集 S 和 Q。集合 S 保留了我们已知的所有 d[v] 的值已经是最短路径的值顶点,而集合 Q 则保留其他所有顶点。集合S初始状态为空,而后每一步都有一个顶点从 Q 移动到 S。这个被选择的顶点是 Q 中拥有最小的 d[u] 值的顶点。当一个顶点 u 从 Q 中转移到了 S 中,算法对每条外接边 (u, v) 进行拓展。
2.2 算法过程图解
以下图为例,具体说明算法的执行过程。
我们将图中的节点分为3类:
1)当前访问的点Current vertex
2) 与当前访问节点相通,但是未访问过的点Fringe vertex
3) 已经访问过的点Visited vertex
为便于图中识别,用下述颜色区分这3种节点:
同时,为了保存当前得到的从开始节点到各个节点的最短路径,我们需要用一个小本本来记录这些值,如下图中的表格(第一行表示各个节点,其下的值代表当前从开始节点到目标节点的最短路径,值后边括号如110(via B)表示到达该节点前要通过的前一个节点是B)。
step 1初始化
从节点A开始,A的Fringe vertex 是B和D(图中inf代表infinite,表示从当前节点到目标节点的路径值还未知,我们设为无穷大)
step 2
get mini in note
最后
以上就是健康保温杯为你收集整理的动态规划(4)详细讲解各最短路径算法及比较1 最短路径问题(The shortest-path problem, SPP)2 Dijkstra(迪杰斯特拉)算法Floyd-Warshall算法(动态规划)Bellman-Ford(动态规划)A*算法次最短路径其他的全部内容,希望文章能够帮你解决动态规划(4)详细讲解各最短路径算法及比较1 最短路径问题(The shortest-path problem, SPP)2 Dijkstra(迪杰斯特拉)算法Floyd-Warshall算法(动态规划)Bellman-Ford(动态规划)A*算法次最短路径其他所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复